Did I find the right examples for you? yes no

All Samples(16)  |  Call(10)  |  Derive(0)  |  Import(6)

src/s/y/sympy-0.7.5/sympy/integrals/rde.py   sympy(Download)
    This constitutes step 3 of the outline given in the rde.py docstring.
    """
    from sympy.integrals.prde import (parametric_log_deriv, limited_integrate,
        is_log_deriv_k_t_radical_in_field)
    # TODO: finish writing this and write tests
                # if alpha == m*Dt + Dz for z in k and m in ZZ:
                try:
                    (za, zd), m = limited_integrate(alphaa, alphad, [(etaa, etad)],
                        DE)
                except NonElementaryIntegralException:
                        betaa, betad = frac_in(beta, DE.t)
                        try:
                            (za, zd), m = limited_integrate(betaa, betad,
                                [(etaa, etad)], DE)
                        except NonElementaryIntegralException:

src/s/y/sympy-HEAD/sympy/integrals/rde.py   sympy(Download)
    This constitutes step 3 of the outline given in the rde.py docstring.
    """
    from sympy.integrals.prde import (parametric_log_deriv, limited_integrate,
        is_log_deriv_k_t_radical_in_field)
    # TODO: finish writing this and write tests
                # if alpha == m*Dt + Dz for z in k and m in ZZ:
                try:
                    (za, zd), m = limited_integrate(alphaa, alphad, [(etaa, etad)],
                        DE)
                except NonElementaryIntegralException:
                        betaa, betad = frac_in(beta, DE.t)
                        try:
                            (za, zd), m = limited_integrate(betaa, betad,
                                [(etaa, etad)], DE)
                        except NonElementaryIntegralException:

src/s/y/sympy-0.7.5/sympy/integrals/risch.py   sympy(Download)
    False.
    """
    from sympy.integrals.prde import limited_integrate
 
    Zero = Poly(0, DE.t)
 
            try:
                (ba, bd), c = limited_integrate(aa, ad, [(Dta, Dtb)], DE)
                if len(c) != 1:
                    raise ValueError("Length of c should  be 1")

src/s/y/sympy-HEAD/sympy/integrals/risch.py   sympy(Download)
    False.
    """
    from sympy.integrals.prde import limited_integrate
 
    Zero = Poly(0, DE.t)
 
            try:
                (ba, bd), c = limited_integrate(aa, ad, [(Dta, Dtb)], DE)
                assert len(c) == 1
            except NonElementaryIntegralException:

src/s/y/sympy-0.7.5/sympy/integrals/tests/test_prde.py   sympy(Download)
"""Most of these tests come from the examples in Bronstein's book."""
from sympy import Poly, Matrix, S, symbols, I
from sympy.integrals.risch import DifferentialExtension
from sympy.integrals.prde import (prde_normal_denom, prde_special_denom,
    prde_linear_constraints, constant_system, prde_spde, prde_no_cancel_b_large,
def test_limited_integrate():
    DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
    G = [(Poly(x, x), Poly(x + 1, x))]
    assert limited_integrate(Poly(-(1 + x + 5*x**2 - 3*x**3), x),
    Poly(1 - x - x**2 + x**3, x), G, DE) == \
        ((Poly(x**2 - x + 2, x), Poly(x - 1, x)), [2])
    G = [(Poly(1, x), Poly(x, x))]
    assert limited_integrate(Poly(5*x**2, x), Poly(3, x), G, DE) == \

src/s/y/sympy-HEAD/sympy/integrals/tests/test_prde.py   sympy(Download)
"""Most of these tests come from the examples in Bronstein's book."""
from sympy import Poly, Matrix, S, symbols, I
from sympy.integrals.risch import DifferentialExtension
from sympy.integrals.prde import (prde_normal_denom, prde_special_denom,
    prde_linear_constraints, constant_system, prde_spde, prde_no_cancel_b_large,
def test_limited_integrate():
    DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
    G = [(Poly(x, x), Poly(x + 1, x))]
    assert limited_integrate(Poly(-(1 + x + 5*x**2 - 3*x**3), x),
    Poly(1 - x - x**2 + x**3, x), G, DE) == \
        ((Poly(x**2 - x + 2, x), Poly(x - 1, x)), [2])
    G = [(Poly(1, x), Poly(x, x))]
    assert limited_integrate(Poly(5*x**2, x), Poly(3, x), G, DE) == \