Did I find the right examples for you? yes no

All Samples(14)  |  Call(8)  |  Derive(0)  |  Import(6)

src/s/y/sympy-0.7.5/sympy/integrals/rde.py   sympy(Download)
    This constitutes step 2 of the outline given in the rde.py docstring.
    """
    from sympy.integrals.prde import parametric_log_deriv
    # TODO: finish writing this and write tests
 
                alphaa, alphad = frac_in(-ba.eval(0)/bd.eval(0)/a.eval(0), DE.t)
                etaa, etad = frac_in(dcoeff, DE.t)
                A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE)
                if A is not None:
                    a, m, z = A
 
                if recognize_log_derivative(2*betaa, betad, DE):
                    A = parametric_log_deriv(alphaa*sqrt(-1)*betad+alphad*betaa, alphad*betad, etaa, etad, DE)
                    if A is not None:
                       a, m, z = A
    This constitutes step 3 of the outline given in the rde.py docstring.
    """
    from sympy.integrals.prde import (parametric_log_deriv, limited_integrate,
        is_log_deriv_k_t_radical_in_field)
    # TODO: finish writing this and write tests
            with DecrementLevel(DE):
                alphaa, alphad = frac_in(alpha, DE.t)
                A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE)
                if A is not None:
                    # if alpha == m*Dt/t + Dz/z for z in k* and m in ZZ:

src/s/y/sympy-HEAD/sympy/integrals/rde.py   sympy(Download)
    This constitutes step 2 of the outline given in the rde.py docstring.
    """
    from sympy.integrals.prde import parametric_log_deriv
    # TODO: finish writing this and write tests
 
                alphaa, alphad = frac_in(-ba.eval(0)/bd.eval(0)/a.eval(0), DE.t)
                etaa, etad = frac_in(dcoeff, DE.t)
                A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE)
                if A is not None:
                    a, m, z = A
 
                if recognize_log_derivative(2*betaa, betad, DE):
                    A = parametric_log_deriv(alphaa*sqrt(-1)*betad+alphad*betaa, alphad*betad, etaa, etad, DE)
                    if A is not None:
                       a, m, z = A
    This constitutes step 3 of the outline given in the rde.py docstring.
    """
    from sympy.integrals.prde import (parametric_log_deriv, limited_integrate,
        is_log_deriv_k_t_radical_in_field)
    # TODO: finish writing this and write tests
            with DecrementLevel(DE):
                alphaa, alphad = frac_in(alpha, DE.t)
                A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE)
                if A is not None:
                    # if alpha == m*Dt/t + Dz/z for z in k* and m in ZZ: