Did I find the right examples for you? yes no

All Samples(8)  |  Call(4)  |  Derive(0)  |  Import(4)

src/s/y/sympy-0.7.5/sympy/integrals/rde.py   sympy(Download)
    [q1, ..., qm], a list of Polys.
    """
    from sympy.integrals.prde import (prde_no_cancel_b_large,
        prde_no_cancel_b_small)
 
 
        if parametric:
            return prde_no_cancel_b_small(b, cQ, n, DE)
 
        R = no_cancel_b_small(b, cQ, n, DE)

src/s/y/sympy-HEAD/sympy/integrals/rde.py   sympy(Download)
    [q1, ..., qm], a list of Polys.
    """
    from sympy.integrals.prde import (prde_no_cancel_b_large,
        prde_no_cancel_b_small)
 
 
        if parametric:
            return prde_no_cancel_b_small(b, cQ, n, DE)
 
        R = no_cancel_b_small(b, cQ, n, DE)

src/s/y/sympy-0.7.5/sympy/integrals/tests/test_prde.py   sympy(Download)
"""Most of these tests come from the examples in Bronstein's book."""
from sympy import Poly, Matrix, S, symbols, I
from sympy.integrals.risch import DifferentialExtension
from sympy.integrals.prde import (prde_normal_denom, prde_special_denom,
    prde_linear_constraints, constant_system, prde_spde, prde_no_cancel_b_large,
    # (c1 = 4), with some of the ci for the original q equal to 0.
    G = [Poly(t**6, t), Poly(x*t**5, t), Poly(t**3, t), Poly(x*t**2, t), Poly(1 + x, t)]
    assert prde_no_cancel_b_small(Poly(x*t, t), G, 4, DE) == \
        ([Poly(t**4/4 - x/12*t**3 + x**2/24*t**2 + (-S(11)/12 - x**3/24)*t + x/24, t),
        Poly(x/3*t**3 - x**2/6*t**2 + (-S(1)/3 + x**3/6)*t - x/6, t), Poly(t, t),

src/s/y/sympy-HEAD/sympy/integrals/tests/test_prde.py   sympy(Download)
"""Most of these tests come from the examples in Bronstein's book."""
from sympy import Poly, Matrix, S, symbols, I
from sympy.integrals.risch import DifferentialExtension
from sympy.integrals.prde import (prde_normal_denom, prde_special_denom,
    prde_linear_constraints, constant_system, prde_spde, prde_no_cancel_b_large,
    # (c1 = 4), with some of the ci for the original q equal to 0.
    G = [Poly(t**6, t), Poly(x*t**5, t), Poly(t**3, t), Poly(x*t**2, t), Poly(1 + x, t)]
    assert prde_no_cancel_b_small(Poly(x*t, t), G, 4, DE) == \
        ([Poly(t**4/4 - x/12*t**3 + x**2/24*t**2 + (-S(11)/12 - x**3/24)*t + x/24, t),
        Poly(x/3*t**3 - x**2/6*t**2 + (-S(1)/3 + x**3/6)*t - x/6, t), Poly(t, t),