Did I find the right examples for you? yes no

# sympy.integrals.rde.order_at

All Samples(22)  |  Call(18)  |  Derive(0)  |  Import(4)

```    NonElementaryIntegralException, residue_reduce, splitfactor,
residue_reduce_derivation, DecrementLevel, recognize_log_derivative)
from sympy.integrals.rde import (order_at, order_at_oo, weak_normalizer,
bound_degree, spde, solve_poly_rde)
from sympy.core.compatibility import reduce, xrange
```
```            "'base'}, not %s." % case)

nb = order_at(ba, p, DE.t) - order_at(bd, p, DE.t)
nc = min([order_at(Ga, p, DE.t) - order_at(Gd, p, DE.t) for Ga, Gd in G])
n = min(0, nc - min(0, nb))
```

```    NonElementaryIntegralException, residue_reduce, splitfactor,
residue_reduce_derivation, DecrementLevel, recognize_log_derivative)
from sympy.integrals.rde import (order_at, order_at_oo, weak_normalizer,
bound_degree, spde, solve_poly_rde)
from sympy.core.compatibility import reduce, xrange
```
```            "'base'}, not %s." % case)

nb = order_at(ba, p, DE.t) - order_at(bd, p, DE.t)
nc = min([order_at(Ga, p, DE.t) - order_at(Gd, p, DE.t) for Ga, Gd in G])
n = min(0, nc - min(0, nb))
```

```"""Most of these tests come from the examples in Bronstein's book."""
from sympy import Poly, S, symbols, oo, I
from sympy.integrals.risch import (DifferentialExtension,
NonElementaryIntegralException)
from sympy.integrals.rde import (order_at, order_at_oo, weak_normalizer,
```
```    p1 = Poly(t, t)
p2 = Poly(1 + t**2, t)
assert order_at(a, p1, t) == 4
assert order_at(b, p1, t) == 1
assert order_at(a, p2, t) == 0
assert order_at(b, p2, t) == 3
```

```"""Most of these tests come from the examples in Bronstein's book."""
from sympy import Poly, S, symbols, oo, I
from sympy.integrals.risch import (DifferentialExtension,
NonElementaryIntegralException)
from sympy.integrals.rde import (order_at, order_at_oo, weak_normalizer,
```
```    p1 = Poly(t, t)
p2 = Poly(1 + t**2, t)
assert order_at(a, p1, t) == 4
assert order_at(b, p1, t) == 1
assert order_at(a, p2, t) == 0
assert order_at(b, p2, t) == 3
```