Did I find the right examples for you? yes no

# sympy.integrals.rde.order_at_oo

All Samples(14)  |  Call(10)  |  Derive(0)  |  Import(4)

```    NonElementaryIntegralException, residue_reduce, splitfactor,
residue_reduce_derivation, DecrementLevel, recognize_log_derivative)
from sympy.integrals.rde import (order_at, order_at_oo, weak_normalizer,
bound_degree, spde, solve_poly_rde)
from sympy.core.compatibility import reduce, xrange
```
```        a = hn*hs
b = -derivation(hn, DE) - (hn*derivation(hs, DE)).quo(hs)
mu = min(order_at_oo(fa, fd, DE.t), min([order_at_oo(ga, gd, DE.t) for
ga, gd in G]))
# So far, all the above are also nonlinear or Liouvillian, but if this
```

```    NonElementaryIntegralException, residue_reduce, splitfactor,
residue_reduce_derivation, DecrementLevel, recognize_log_derivative)
from sympy.integrals.rde import (order_at, order_at_oo, weak_normalizer,
bound_degree, spde, solve_poly_rde)
from sympy.core.compatibility import reduce, xrange
```
```        a = hn*hs
b = -derivation(hn, DE) - (hn*derivation(hs, DE)).quo(hs)
mu = min(order_at_oo(fa, fd, DE.t), min([order_at_oo(ga, gd, DE.t) for
ga, gd in G]))
# So far, all the above are also nonlinear or Liouvillian, but if this
```

```"""Most of these tests come from the examples in Bronstein's book."""
from sympy import Poly, S, symbols, oo, I
from sympy.integrals.risch import (DifferentialExtension,
NonElementaryIntegralException)
from sympy.integrals.rde import (order_at, order_at_oo, weak_normalizer,
```
```    assert order_at(b, p2, t) == 3
assert order_at(Poly(0, t), Poly(t, t), t) == oo
assert order_at_oo(Poly(t**2 - 1, t), Poly(t + 1), t) == \
order_at_oo(Poly(t - 1, t), Poly(1, t), t) == -1
assert order_at_oo(Poly(0, t), Poly(1, t), t) == oo
```

```"""Most of these tests come from the examples in Bronstein's book."""
from sympy import Poly, S, symbols, oo, I
from sympy.integrals.risch import (DifferentialExtension,
NonElementaryIntegralException)
from sympy.integrals.rde import (order_at, order_at_oo, weak_normalizer,
```
```    assert order_at(b, p2, t) == 3
assert order_at(Poly(0, t), Poly(t, t), t) == oo
assert order_at_oo(Poly(t**2 - 1, t), Poly(t + 1), t) == \
order_at_oo(Poly(t - 1, t), Poly(1, t), t) == -1
assert order_at_oo(Poly(0, t), Poly(1, t), t) == oo
```