Did I find the right examples for you? yes no

# sympy.integrals.rde.solve_poly_rde

All Samples(12)  |  Call(8)  |  Derive(0)  |  Import(4)

```    NonElementaryIntegralException, residue_reduce, splitfactor,
residue_reduce_derivation, DecrementLevel, recognize_log_derivative)
from sympy.integrals.rde import (order_at, order_at_oo, weak_normalizer,
bound_degree, spde, solve_poly_rde)
from sympy.core.compatibility import reduce, xrange
```
```            # denominator and degree bound from above.
B, C, m, alpha, beta = spde(A, B, C, N, DE)
y = solve_poly_rde(B, C, m, DE)

return ((alpha*y + beta, h), list(l[0][1:]))
```

```    NonElementaryIntegralException, residue_reduce, splitfactor,
residue_reduce_derivation, DecrementLevel, recognize_log_derivative)
from sympy.integrals.rde import (order_at, order_at_oo, weak_normalizer,
bound_degree, spde, solve_poly_rde)
from sympy.core.compatibility import reduce, xrange
```
```            # denominator and degree bound from above.
B, C, m, alpha, beta = spde(A, B, C, N, DE)
y = solve_poly_rde(B, C, m, DE)

return ((alpha*y + beta, h), list(l[0][1:]))
```

```"""Most of these tests come from the examples in Bronstein's book."""
from sympy import Poly, S, symbols, oo, I
from sympy.integrals.risch import (DifferentialExtension,
NonElementaryIntegralException)
from sympy.integrals.rde import (order_at, order_at_oo, weak_normalizer,
```
```def test_solve_poly_rde_no_cancel():
# deg(b) large
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]})
assert solve_poly_rde(Poly(t**2 + 1, t), Poly(t**3 + (x + 1)*t**2 + t + x + 2, t),
oo, DE) == Poly(t + x, t)
# deg(b) small
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
assert solve_poly_rde(Poly(0, x), Poly(x/2 - S(1)/4, x), oo, DE) == \
```
```        Poly(x**2/4 - x/4, x)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
assert solve_poly_rde(Poly(2, t), Poly(t**2 + 2*t + 3, t), 1, DE) == \
Poly(t + 1, t, x)
# deg(b) == deg(D) - 1
```

```"""Most of these tests come from the examples in Bronstein's book."""
from sympy import Poly, S, symbols, oo, I
from sympy.integrals.risch import (DifferentialExtension,
NonElementaryIntegralException)
from sympy.integrals.rde import (order_at, order_at_oo, weak_normalizer,
```
```def test_solve_poly_rde_no_cancel():
# deg(b) large
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]})
assert solve_poly_rde(Poly(t**2 + 1, t), Poly(t**3 + (x + 1)*t**2 + t + x + 2, t),
oo, DE) == Poly(t + x, t)
# deg(b) small
DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
assert solve_poly_rde(Poly(0, x), Poly(x/2 - S(1)/4, x), oo, DE) == \
```
```        Poly(x**2/4 - x/4, x)
DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
assert solve_poly_rde(Poly(2, t), Poly(t**2 + 2*t + 3, t), 1, DE) == \
Poly(t + 1, t, x)
# deg(b) == deg(D) - 1
```