Did I find the right examples for you? yes no

All Samples(38)  |  Call(32)  |  Derive(0)  |  Import(6)

src/s/y/sympy-0.7.5/sympy/integrals/prde.py   sympy(Download)
from sympy.polys import Poly, lcm, cancel, sqf_list
 
from sympy.integrals.risch import (gcdex_diophantine, frac_in, derivation,
    NonElementaryIntegralException, residue_reduce, splitfactor,
    residue_reduce_derivation, DecrementLevel, recognize_log_derivative)
        if case == 'exp':
            dcoeff = DE.d.quo(Poly(DE.t, DE.t))
            with DecrementLevel(DE):  # We are guaranteed to not have problems,
                                      # because case != 'base'.
                alphaa, alphad = frac_in(-ba.eval(0)/bd.eval(0)/a.eval(0), DE.t)
        elif case == 'tan':
            dcoeff = DE.d.quo(Poly(DE.t**2 + 1, DE.t))
            with DecrementLevel(DE):  # We are guaranteed to not have problems,
                                      # because case != 'base'.
                betaa, alphaa, alphad =  real_imag(ba, bd*a, DE.t)
    if case == 'exp':
        wa, wd = derivation(DE.t, DE).cancel(Poly(DE.t, DE.t), include=True)
        with DecrementLevel(DE):
            pa, pd = frac_in(p, DE.t, cancel=True)
            wa, wd = frac_in((wa, wd), DE.t)
 
    elif case == 'primitive':
        with DecrementLevel(DE):
            pa, pd = frac_in(p, DE.t)
            A = is_log_deriv_k_t_radical_in_field(pa, pd, DE, case='auto')

src/s/y/sympy-HEAD/sympy/integrals/prde.py   sympy(Download)
from sympy.polys import Poly, lcm, cancel, sqf_list
 
from sympy.integrals.risch import (gcdex_diophantine, frac_in, derivation,
    NonElementaryIntegralException, residue_reduce, splitfactor,
    residue_reduce_derivation, DecrementLevel, recognize_log_derivative)
        if case == 'exp':
            dcoeff = DE.d.quo(Poly(DE.t, DE.t))
            with DecrementLevel(DE):  # We are guaranteed to not have problems,
                                      # because case != 'base'.
                alphaa, alphad = frac_in(-ba.eval(0)/bd.eval(0)/a.eval(0), DE.t)
        elif case == 'tan':
            dcoeff = DE.d.quo(Poly(DE.t**2 + 1, DE.t))
            with DecrementLevel(DE):  # We are guaranteed to not have problems,
                                      # because case != 'base'.
                betaa, alphaa, alphad =  real_imag(ba, bd*a, DE.t)
    if case == 'exp':
        wa, wd = derivation(DE.t, DE).cancel(Poly(DE.t, DE.t), include=True)
        with DecrementLevel(DE):
            pa, pd = frac_in(p, DE.t, cancel=True)
            wa, wd = frac_in((wa, wd), DE.t)
 
    elif case == 'primitive':
        with DecrementLevel(DE):
            pa, pd = frac_in(p, DE.t)
            A = is_log_deriv_k_t_radical_in_field(pa, pd, DE, case='auto')

src/s/y/sympy-0.7.5/sympy/integrals/rde.py   sympy(Download)
from sympy.polys import Poly, gcd, ZZ, cancel
 
from sympy.integrals.risch import (gcdex_diophantine, frac_in, derivation,
    splitfactor, NonElementaryIntegralException, DecrementLevel)
 
        if case == 'exp':
            dcoeff = DE.d.quo(Poly(DE.t, DE.t))
            with DecrementLevel(DE):  # We are guaranteed to not have problems,
                                      # because case != 'base'.
                alphaa, alphad = frac_in(-ba.eval(0)/bd.eval(0)/a.eval(0), DE.t)
        elif case == 'tan':
            dcoeff = DE.d.quo(Poly(DE.t**2+1, DE.t))
            with DecrementLevel(DE):  # We are guaranteed to not have problems,
                                      # because case != 'base'.
                alphaa, alphad = frac_in(im(-ba.eval(sqrt(-1))/bd.eval(sqrt(-1))/a.eval(sqrt(-1))), DE.t)
 
        t1 = DE.t
        with DecrementLevel(DE):
            alphaa, alphad = frac_in(alpha, DE.t)
            if db == da - 1:
        if da == db:
            etaa, etad = frac_in(DE.d.quo(Poly(DE.t, DE.t)), DE.T[DE.level - 1])
            with DecrementLevel(DE):
                alphaa, alphad = frac_in(alpha, DE.t)
                A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE)

src/s/y/sympy-HEAD/sympy/integrals/rde.py   sympy(Download)
from sympy.polys import Poly, gcd, ZZ, cancel
 
from sympy.integrals.risch import (gcdex_diophantine, frac_in, derivation,
    splitfactor, NonElementaryIntegralException, DecrementLevel)
 
        if case == 'exp':
            dcoeff = DE.d.quo(Poly(DE.t, DE.t))
            with DecrementLevel(DE):  # We are guaranteed to not have problems,
                                      # because case != 'base'.
                alphaa, alphad = frac_in(-ba.eval(0)/bd.eval(0)/a.eval(0), DE.t)
        elif case == 'tan':
            dcoeff = DE.d.quo(Poly(DE.t**2+1, DE.t))
            with DecrementLevel(DE):  # We are guaranteed to not have problems,
                                      # because case != 'base'.
                alphaa, alphad = frac_in(im(-ba.eval(sqrt(-1))/bd.eval(sqrt(-1))/a.eval(sqrt(-1))), DE.t)
 
        t1 = DE.t
        with DecrementLevel(DE):
            alphaa, alphad = frac_in(alpha, DE.t)
            if db == da - 1:
        if da == db:
            etaa, etad = frac_in(DE.d.quo(Poly(DE.t, DE.t)), DE.T[DE.level - 1])
            with DecrementLevel(DE):
                alphaa, alphad = frac_in(alpha, DE.t)
                A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE)

src/s/y/sympy-0.7.5/sympy/integrals/tests/test_risch.py   sympy(Download)
"""Most of these tests come from the examples in Bronstein's book."""
from sympy import (Poly, I, S, Function, log, symbols, exp, tan, sqrt,
    Symbol, Lambda, sin, cos, Eq, Piecewise, factor)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, as_poly_1t,
    derivation, splitfactor, splitfactor_sqf, canonical_representation,
    assert DE.case == 'primitive'
 
    with DecrementLevel(DE):
        assert DE.level == -2
        assert DE.t == t0
        assert DE.d == Poly(t0, t0)
        assert DE.case == 'exp'
 
        with DecrementLevel(DE):
    # Test that __exit__ is called after an exception correctly
    try:
        with DecrementLevel(DE):
            raise TestingException
    except TestingException:

src/s/y/sympy-HEAD/sympy/integrals/tests/test_risch.py   sympy(Download)
"""Most of these tests come from the examples in Bronstein's book."""
from sympy import (Poly, I, S, Function, log, symbols, exp, tan, sqrt,
    Symbol, Lambda, sin, cos, Eq, Piecewise, factor)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, as_poly_1t,
    derivation, splitfactor, splitfactor_sqf, canonical_representation,
    assert DE.case == 'primitive'
 
    with DecrementLevel(DE):
        assert DE.level == -2
        assert DE.t == t0
        assert DE.d == Poly(t0, t0)
        assert DE.case == 'exp'
 
        with DecrementLevel(DE):
    # Test that __exit__ is called after an exception correctly
    try:
        with DecrementLevel(DE):
            raise TestingException
    except TestingException: