Did I find the right examples for you? yes no

All Samples(74)  |  Call(68)  |  Derive(0)  |  Import(6)

src/s/y/sympy-0.7.5/sympy/integrals/prde.py   sympy(Download)
from sympy.polys import Poly, lcm, cancel, sqf_list
 
from sympy.integrals.risch import (gcdex_diophantine, frac_in, derivation,
    NonElementaryIntegralException, residue_reduce, splitfactor,
    residue_reduce_derivation, DecrementLevel, recognize_log_derivative)
    c = a*h
 
    ba = a*fa - dn*derivation(h, DE)*fd
    ba, bd = ba.cancel(fd, include=True)
 
                Ri = A[i, :]
                # Rm+1; m = A.rows
                Rm1 = Ri.applyfunc(lambda x: derivation(x, DE, basic=True)/
                    derivation(A[i, j], DE, basic=True))
                Rm1 = Rm1.applyfunc(cancel)
                um1 = cancel(derivation(u[i], DE, basic=True)/

src/s/y/sympy-HEAD/sympy/integrals/prde.py   sympy(Download)
from sympy.polys import Poly, lcm, cancel, sqf_list
 
from sympy.integrals.risch import (gcdex_diophantine, frac_in, derivation,
    NonElementaryIntegralException, residue_reduce, splitfactor,
    residue_reduce_derivation, DecrementLevel, recognize_log_derivative)
    c = a*h
 
    ba = a*fa - dn*derivation(h, DE)*fd
    ba, bd = ba.cancel(fd, include=True)
 
                Ri = A[i, :]
                # Rm+1; m = A.rows
                Rm1 = Ri.applyfunc(lambda x: derivation(x, DE, basic=True)/
                    derivation(A[i, j], DE, basic=True))
                Rm1 = Rm1.applyfunc(cancel)
                um1 = cancel(derivation(u[i], DE, basic=True)/

src/s/y/sympy-0.7.5/sympy/integrals/rde.py   sympy(Download)
from sympy.polys import Poly, gcd, ZZ, cancel
 
from sympy.integrals.risch import (gcdex_diophantine, frac_in, derivation,
    splitfactor, NonElementaryIntegralException, DecrementLevel)
 
    N = [i for i in r.real_roots() if i in ZZ and i > 0]
 
    q = reduce(mul, [gcd(a - Poly(n, DE.t)*derivation(d1, DE), d1) for n in N],
        Poly(1, DE.t))
 
    dq = derivation(q, DE)
    ca, cd = ca.cancel(gd, include=True)
 
    ba = a*fa - dn*derivation(h, DE)*fd
    ba, bd = ba.cancel(fd, include=True)
 
 
        r, z = gcdex_diophantine(b, a, c)
        b += derivation(a, DE)
        c = z - derivation(r, DE)
        n -= a.degree(DE.t)

src/s/y/sympy-HEAD/sympy/integrals/rde.py   sympy(Download)
from sympy.polys import Poly, gcd, ZZ, cancel
 
from sympy.integrals.risch import (gcdex_diophantine, frac_in, derivation,
    splitfactor, NonElementaryIntegralException, DecrementLevel)
 
    N = [i for i in r.real_roots() if i in ZZ and i > 0]
 
    q = reduce(mul, [gcd(a - Poly(n, DE.t)*derivation(d1, DE), d1) for n in N],
        Poly(1, DE.t))
 
    dq = derivation(q, DE)
    ca, cd = ca.cancel(gd, include=True)
 
    ba = a*fa - dn*derivation(h, DE)*fd
    ba, bd = ba.cancel(fd, include=True)
 
 
        r, z = gcdex_diophantine(b, a, c)
        b += derivation(a, DE)
        c = z - derivation(r, DE)
        n -= a.degree(DE.t)

src/s/y/sympy-0.7.5/sympy/integrals/tests/test_risch.py   sympy(Download)
"""Most of these tests come from the examples in Bronstein's book."""
from sympy import (Poly, I, S, Function, log, symbols, exp, tan, sqrt,
    Symbol, Lambda, sin, cos, Eq, Piecewise, factor)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, as_poly_1t,
    derivation, splitfactor, splitfactor_sqf, canonical_representation,
def test_derivation():
    p = Poly(4*x**4*t**5 + (-4*x**3 - 4*x**4)*t**4 + (-3*x**2 + 2*x**3)*t**3 +
        (2*x + 7*x**2 + 2*x**3)*t**2 + (1 - 4*x - 4*x**2)*t - 1 + 2*x, t)
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t**2 - 3/(2*x)*t + 1/(2*x), t)]})
    assert derivation(p, DE) == Poly(-20*x**4*t**6 + (2*x**3 + 16*x**4)*t**5 +
        (21*x**2 + 12*x**3)*t**4 + (7*x/2 - 25*x**2 - 12*x**3)*t**3 +
        (-5 - 15*x/2 + 7*x**2)*t**2 - (3 - 8*x - 10*x**2 - 4*x**3)/(2*x)*t +
        (1 - 4*x**2)/(2*x), t)
    assert derivation(Poly(1, t), DE) == Poly(0, t)
    assert derivation(Poly(t, t), DE) == DE.d
    assert derivation(Poly(1, t), DE) == Poly(0, t)
    assert derivation(Poly(t, t), DE) == DE.d
    assert derivation(Poly(t**2 + 1/x*t + (1 - 2*x)/(4*x**2), t), DE) == \
        Poly(-2*t**3 - 4/x*t**2 - (5 - 2*x)/(2*x**2)*t - (1 - 2*x)/(2*x**3), t, domain='ZZ(x)')
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(t, t)]})

src/s/y/sympy-HEAD/sympy/integrals/tests/test_risch.py   sympy(Download)
"""Most of these tests come from the examples in Bronstein's book."""
from sympy import (Poly, I, S, Function, log, symbols, exp, tan, sqrt,
    Symbol, Lambda, sin, cos, Eq, Piecewise, factor)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, as_poly_1t,
    derivation, splitfactor, splitfactor_sqf, canonical_representation,
def test_derivation():
    p = Poly(4*x**4*t**5 + (-4*x**3 - 4*x**4)*t**4 + (-3*x**2 + 2*x**3)*t**3 +
        (2*x + 7*x**2 + 2*x**3)*t**2 + (1 - 4*x - 4*x**2)*t - 1 + 2*x, t)
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t**2 - 3/(2*x)*t + 1/(2*x), t)]})
    assert derivation(p, DE) == Poly(-20*x**4*t**6 + (2*x**3 + 16*x**4)*t**5 +
        (21*x**2 + 12*x**3)*t**4 + (7*x/2 - 25*x**2 - 12*x**3)*t**3 +
        (-5 - 15*x/2 + 7*x**2)*t**2 - (3 - 8*x - 10*x**2 - 4*x**3)/(2*x)*t +
        (1 - 4*x**2)/(2*x), t)
    assert derivation(Poly(1, t), DE) == Poly(0, t)
    assert derivation(Poly(t, t), DE) == DE.d
    assert derivation(Poly(1, t), DE) == Poly(0, t)
    assert derivation(Poly(t, t), DE) == DE.d
    assert derivation(Poly(t**2 + 1/x*t + (1 - 2*x)/(4*x**2), t), DE) == \
        Poly(-2*t**3 - 4/x*t**2 - (5 - 2*x)/(2*x**2)*t - (1 - 2*x)/(2*x**3), t, domain='ZZ(x)')
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(t, t)]})