Did I find the right examples for you? yes no

# sympy.integrals.risch.integrate_hyperexponential

All Samples(36)  |  Call(34)  |  Derive(0)  |  Import(2)

```"""Most of these tests come from the examples in Bronstein's book."""
from sympy import (Poly, I, S, Function, log, symbols, exp, tan, sqrt,
Symbol, Lambda, sin, cos, Eq, Piecewise, factor)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, as_poly_1t,
derivation, splitfactor, splitfactor_sqf, canonical_representation,
```
```    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t1**2, t1),
Poly(t*(1 + t1**2), t)], 'Tfuncs': [tan, Lambda(i, exp(tan(i)))]})
assert integrate_hyperexponential(a, d, DE) == \
(exp(2*tan(x))*tan(x) + exp(tan(x)), 1 + t1**2, True)
# exp(2*tan(x))*tan(x) + tan(x) + exp(tan(x))
a = Poly((t1**3 + (x + 1)*t1**2 + t1 + x + 2)*t, t)
assert integrate_hyperexponential(a, d, DE) == \
```
```        'Tfuncs': [Lambda(i, exp(x**2))]})

assert integrate_hyperexponential(a, d, DE) == \
(0, NonElementaryIntegral(exp(x**2), x), False)

DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)], 'Tfuncs': [exp]})
assert integrate_hyperexponential(a, d, DE) == (exp(x), 0, True)
```

```"""Most of these tests come from the examples in Bronstein's book."""
from sympy import (Poly, I, S, Function, log, symbols, exp, tan, sqrt,
Symbol, Lambda, sin, cos, Eq, Piecewise, factor)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, as_poly_1t,
derivation, splitfactor, splitfactor_sqf, canonical_representation,
```
```    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t1**2, t1),
Poly(t*(1 + t1**2), t)], 'Tfuncs': [tan, Lambda(i, exp(tan(i)))]})
assert integrate_hyperexponential(a, d, DE) == \
(exp(2*tan(x))*tan(x) + exp(tan(x)), 1 + t1**2, True)
# exp(2*tan(x))*tan(x) + tan(x) + exp(tan(x))
a = Poly((t1**3 + (x + 1)*t1**2 + t1 + x + 2)*t, t)
assert integrate_hyperexponential(a, d, DE) == \
```
```        'Tfuncs': [Lambda(i, exp(x**2))]})

assert integrate_hyperexponential(a, d, DE) == \
(0, NonElementaryIntegral(exp(x**2), x), False)

DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)], 'Tfuncs': [exp]})
assert integrate_hyperexponential(a, d, DE) == (exp(x), 0, True)
```