Did I find the right examples for you? yes no

sympy.integrals.risch.integrate_nonlinear_no_specials

All Samples(6)  |  Call(4)  |  Derive(0)  |  Import(2)

```"""Most of these tests come from the examples in Bronstein's book."""
from sympy import (Poly, I, S, Function, log, symbols, exp, tan, sqrt,
Symbol, Lambda, sin, cos, Eq, Piecewise, factor)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, as_poly_1t,
derivation, splitfactor, splitfactor_sqf, canonical_representation,
```
```    DE = DifferentialExtension(extension={'D': [Poly(1, x),
Poly(-t**2 - t/x - (1 - nu**2/x**2), t)], 'Tfuncs': [f]})
assert integrate_nonlinear_no_specials(a, d, DE) == \
(-log(1 + f(x)**2 + x**2/2)/2 - (4 + x**2)/(4 + 2*x**2 + 4*f(x)**2), True)
assert integrate_nonlinear_no_specials(Poly(t, t), Poly(1, t), DE) == \
```

```"""Most of these tests come from the examples in Bronstein's book."""
from sympy import (Poly, I, S, Function, log, symbols, exp, tan, sqrt,
Symbol, Lambda, sin, cos, Eq, Piecewise, factor)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, as_poly_1t,
derivation, splitfactor, splitfactor_sqf, canonical_representation,
```
```    DE = DifferentialExtension(extension={'D': [Poly(1, x),
Poly(-t**2 - t/x - (1 - nu**2/x**2), t)], 'Tfuncs': [f]})
assert integrate_nonlinear_no_specials(a, d, DE) == \
(-log(1 + f(x)**2 + x**2/2)/2 - (4 + x**2)/(4 + 2*x**2 + 4*f(x)**2), True)
assert integrate_nonlinear_no_specials(Poly(t, t), Poly(1, t), DE) == \
```