Did I find the right examples for you? yes no

All Samples(10)  |  Call(8)  |  Derive(0)  |  Import(2)

src/s/y/sympy-0.7.5/sympy/integrals/tests/test_risch.py   sympy(Download)
"""Most of these tests come from the examples in Bronstein's book."""
from sympy import (Poly, I, S, Function, log, symbols, exp, tan, sqrt,
    Symbol, Lambda, sin, cos, Eq, Piecewise, factor)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, as_poly_1t,
    derivation, splitfactor, splitfactor_sqf, canonical_representation,
def test_recognize_derivative():
    DE = DifferentialExtension(extension={'D': [Poly(1, t)]})
    a = Poly(36, t)
    d = Poly((t - 2)*(t**2 - 1)**2, t)
    assert recognize_derivative(a, d, DE) == False
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
    a = Poly(2, t)
    d = Poly(t**2 - 1, t)
    assert recognize_derivative(a, d, DE) == False
    assert recognize_derivative(Poly(x*t, t), Poly(1, t), DE) == True
    assert recognize_derivative(Poly(x*t, t), Poly(1, t), DE) == True
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
    assert recognize_derivative(Poly(t, t), Poly(1, t), DE) == True
 
 

src/s/y/sympy-HEAD/sympy/integrals/tests/test_risch.py   sympy(Download)
"""Most of these tests come from the examples in Bronstein's book."""
from sympy import (Poly, I, S, Function, log, symbols, exp, tan, sqrt,
    Symbol, Lambda, sin, cos, Eq, Piecewise, factor)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, as_poly_1t,
    derivation, splitfactor, splitfactor_sqf, canonical_representation,
def test_recognize_derivative():
    DE = DifferentialExtension(extension={'D': [Poly(1, t)]})
    a = Poly(36, t)
    d = Poly((t - 2)*(t**2 - 1)**2, t)
    assert recognize_derivative(a, d, DE) == False
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
    a = Poly(2, t)
    d = Poly(t**2 - 1, t)
    assert recognize_derivative(a, d, DE) == False
    assert recognize_derivative(Poly(x*t, t), Poly(1, t), DE) == True
    assert recognize_derivative(Poly(x*t, t), Poly(1, t), DE) == True
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]})
    assert recognize_derivative(Poly(t, t), Poly(1, t), DE) == True