Did I find the right examples for you? yes no

All Samples(18)  |  Call(14)  |  Derive(0)  |  Import(4)

src/s/y/sympy-0.7.5/sympy/integrals/prde.py   sympy(Download)
from sympy.polys import Poly, lcm, cancel, sqf_list
 
from sympy.integrals.risch import (gcdex_diophantine, frac_in, derivation,
    NonElementaryIntegralException, residue_reduce, splitfactor,
    residue_reduce_derivation, DecrementLevel, recognize_log_derivative)
                betad = alphad
                etaa, etad = frac_in(dcoeff, DE.t)
                if recognize_log_derivative(2*betaa, betad, DE):
                    A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE)
                    B = parametric_log_deriv(betaa, betad, etaa, etad, DE)

src/s/y/sympy-HEAD/sympy/integrals/prde.py   sympy(Download)
from sympy.polys import Poly, lcm, cancel, sqf_list
 
from sympy.integrals.risch import (gcdex_diophantine, frac_in, derivation,
    NonElementaryIntegralException, residue_reduce, splitfactor,
    residue_reduce_derivation, DecrementLevel, recognize_log_derivative)
                betad = alphad
                etaa, etad = frac_in(dcoeff, DE.t)
                if recognize_log_derivative(2*betaa, betad, DE):
                    A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE)
                    B = parametric_log_deriv(betaa, betad, etaa, etad, DE)

src/s/y/sympy-0.7.5/sympy/integrals/tests/test_risch.py   sympy(Download)
"""Most of these tests come from the examples in Bronstein's book."""
from sympy import (Poly, I, S, Function, log, symbols, exp, tan, sqrt,
    Symbol, Lambda, sin, cos, Eq, Piecewise, factor)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, as_poly_1t,
    derivation, splitfactor, splitfactor_sqf, canonical_representation,
    d = Poly((2*x + t)*(t + x**2), t)
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
    assert recognize_log_derivative(a, d, DE, z) == True
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
    assert recognize_log_derivative(Poly(t + 1, t), Poly(t + x, t), DE) == True
    assert recognize_log_derivative(Poly(2, t), Poly(t**2 - 1, t), DE) == True
    DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
    assert recognize_log_derivative(Poly(1, x), Poly(x**2 - 2, x), DE) == False

src/s/y/sympy-HEAD/sympy/integrals/tests/test_risch.py   sympy(Download)
"""Most of these tests come from the examples in Bronstein's book."""
from sympy import (Poly, I, S, Function, log, symbols, exp, tan, sqrt,
    Symbol, Lambda, sin, cos, Eq, Piecewise, factor)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, as_poly_1t,
    derivation, splitfactor, splitfactor_sqf, canonical_representation,
    d = Poly((2*x + t)*(t + x**2), t)
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
    assert recognize_log_derivative(a, d, DE, z) == True
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]})
    assert recognize_log_derivative(Poly(t + 1, t), Poly(t + x, t), DE) == True
    assert recognize_log_derivative(Poly(2, t), Poly(t**2 - 1), DE) == True
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1, t)]})
    assert recognize_log_derivative(Poly(1, t), Poly(t**2 - 2), DE) == False