Did I find the right examples for you? yes no

All Samples(20)  |  Call(16)  |  Derive(0)  |  Import(4)

src/s/y/sympy-0.7.5/sympy/integrals/prde.py   sympy(Download)
from sympy.polys import Poly, lcm, cancel, sqf_list
 
from sympy.integrals.risch import (gcdex_diophantine, frac_in, derivation,
    NonElementaryIntegralException, residue_reduce, splitfactor,
    residue_reduce_derivation, DecrementLevel, recognize_log_derivative)
 
    z = z or Dummy('z')
    H, b = residue_reduce(fa, fd, DE, z=z)
    if not b:
        # I will have to verify, but I believe that the answer should be

src/s/y/sympy-HEAD/sympy/integrals/prde.py   sympy(Download)
from sympy.polys import Poly, lcm, cancel, sqf_list
 
from sympy.integrals.risch import (gcdex_diophantine, frac_in, derivation,
    NonElementaryIntegralException, residue_reduce, splitfactor,
    residue_reduce_derivation, DecrementLevel, recognize_log_derivative)
 
    z = z or Dummy('z')
    H, b = residue_reduce(fa, fd, DE, z=z)
    if not b:
        # I will have to verify, but I believe that the answer should be

src/s/y/sympy-0.7.5/sympy/integrals/tests/test_risch.py   sympy(Download)
"""Most of these tests come from the examples in Bronstein's book."""
from sympy import (Poly, I, S, Function, log, symbols, exp, tan, sqrt,
    Symbol, Lambda, sin, cos, Eq, Piecewise, factor)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, as_poly_1t,
    derivation, splitfactor, splitfactor_sqf, canonical_representation,
def test_residue_reduce():
    a = Poly(2*t**2 - t - x**2, t)
    d = Poly(t**3 - x**2*t, t)
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)], 'Tfuncs': [log]})
    assert residue_reduce(a, d, DE, z, invert=False) == \
        ([(Poly(z**2 - S(1)/4, z), Poly((1 + 3*x*z - 6*z**2 -
        2*x**2 + 4*x**2*z**2)*t - x*z + x**2 + 2*x**2*z**2 - 2*z*x**3, t))], False)
    assert residue_reduce(a, d, DE, z, invert=True) == \
        ([(Poly(z**2 - S(1)/4, z), Poly(t + 2*x*z, t))], False)
    assert residue_reduce(Poly(-2/x, t), Poly(t**2 - 1, t,), DE, z, invert=False) == \
    assert residue_reduce(Poly(-2/x, t), Poly(t**2 - 1, t,), DE, z, invert=False) == \
        ([(Poly(z**2 - 1, z), Poly(-2*z*t/x - 2/x, t))], True)
    ans = residue_reduce(Poly(-2/x, t), Poly(t**2 - 1, t), DE, z, invert=True)
    assert ans == ([(Poly(z**2 - 1, z), Poly(t + z, t))], True)
    assert residue_reduce_to_basic(ans[0], DE, z) == -log(-1 + log(x)) + log(1 + log(x))

src/s/y/sympy-HEAD/sympy/integrals/tests/test_risch.py   sympy(Download)
"""Most of these tests come from the examples in Bronstein's book."""
from sympy import (Poly, I, S, Function, log, symbols, exp, tan, sqrt,
    Symbol, Lambda, sin, cos, Eq, Piecewise, factor)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, as_poly_1t,
    derivation, splitfactor, splitfactor_sqf, canonical_representation,
def test_residue_reduce():
    a = Poly(2*t**2 - t - x**2, t)
    d = Poly(t**3 - x**2*t, t)
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)], 'Tfuncs': [log]})
    assert residue_reduce(a, d, DE, z, invert=False) == \
        ([(Poly(z**2 - S(1)/4, z), Poly((1 + 3*x*z - 6*z**2 -
        2*x**2 + 4*x**2*z**2)*t - x*z + x**2 + 2*x**2*z**2 - 2*z*x**3, t))], False)
    assert residue_reduce(a, d, DE, z, invert=True) == \
        ([(Poly(z**2 - S(1)/4, z), Poly(t + 2*x*z, t))], False)
    assert residue_reduce(Poly(-2/x, t), Poly(t**2 - 1, t,), DE, z, invert=False) == \
    assert residue_reduce(Poly(-2/x, t), Poly(t**2 - 1, t,), DE, z, invert=False) == \
        ([(Poly(z**2 - 1, z), Poly(-2*z*t/x - 2/x, t))], True)
    ans = residue_reduce(Poly(-2/x, t), Poly(t**2 - 1, t), DE, z, invert=True)
    assert ans == ([(Poly(z**2 - 1, z), Poly(t + z, t))], True)
    assert residue_reduce_to_basic(ans[0], DE, z) == -log(-1 + log(x)) + log(1 + log(x))