Did I find the right examples for you? yes no

All Samples(4)  |  Call(2)  |  Derive(0)  |  Import(2)

src/s/y/sympy-0.7.5/sympy/integrals/tests/test_risch.py   sympy(Download)
"""Most of these tests come from the examples in Bronstein's book."""
from sympy import (Poly, I, S, Function, log, symbols, exp, tan, sqrt,
    Symbol, Lambda, sin, cos, Eq, Piecewise, factor)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, as_poly_1t,
    derivation, splitfactor, splitfactor_sqf, canonical_representation,
    ans = residue_reduce(Poly(-2/x, t), Poly(t**2 - 1, t), DE, z, invert=True)
    assert ans == ([(Poly(z**2 - 1, z), Poly(t + z, t))], True)
    assert residue_reduce_to_basic(ans[0], DE, z) == -log(-1 + log(x)) + log(1 + log(x))
 
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t**2 - t/x - (1 - nu**2/x**2), t)]})

src/s/y/sympy-HEAD/sympy/integrals/tests/test_risch.py   sympy(Download)
"""Most of these tests come from the examples in Bronstein's book."""
from sympy import (Poly, I, S, Function, log, symbols, exp, tan, sqrt,
    Symbol, Lambda, sin, cos, Eq, Piecewise, factor)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, as_poly_1t,
    derivation, splitfactor, splitfactor_sqf, canonical_representation,
    ans = residue_reduce(Poly(-2/x, t), Poly(t**2 - 1, t), DE, z, invert=True)
    assert ans == ([(Poly(z**2 - 1, z), Poly(t + z, t))], True)
    assert residue_reduce_to_basic(ans[0], DE, z) == -log(-1 + log(x)) + log(1 + log(x))
 
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t**2 - t/x - (1 - nu**2/x**2), t)]})