Did I find the right examples for you? yes no

All Samples(6)  |  Call(4)  |  Derive(0)  |  Import(2)

src/s/y/sympy-0.7.5/sympy/integrals/tests/test_risch.py   sympy(Download)
"""Most of these tests come from the examples in Bronstein's book."""
from sympy import (Poly, I, S, Function, log, symbols, exp, tan, sqrt,
    Symbol, Lambda, sin, cos, Eq, Piecewise, factor)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, as_poly_1t,
    derivation, splitfactor, splitfactor_sqf, canonical_representation,
    assert splitfactor(r, DE, coefficientD=True) == \
        (Poly(x*z - x**2 - z*x**3 + x**4, t), Poly(-x**2 + 4*x**2*z**2, t))
    assert splitfactor_sqf(r, DE, coefficientD=True) == \
        (((Poly(x*z - x**2 - z*x**3 + x**4, t), 1),), ((Poly(-x**2 + 4*x**2*z**2, t), 1),))
    assert splitfactor(Poly(0, t), DE) == (Poly(0, t), Poly(1, t))
    assert splitfactor_sqf(Poly(0, t), DE) == (((Poly(0, t), 1),), ())

src/s/y/sympy-HEAD/sympy/integrals/tests/test_risch.py   sympy(Download)
"""Most of these tests come from the examples in Bronstein's book."""
from sympy import (Poly, I, S, Function, log, symbols, exp, tan, sqrt,
    Symbol, Lambda, sin, cos, Eq, Piecewise, factor)
from sympy.integrals.risch import (gcdex_diophantine, frac_in, as_poly_1t,
    derivation, splitfactor, splitfactor_sqf, canonical_representation,
    assert splitfactor(r, DE, coefficientD=True) == \
        (Poly(x*z - x**2 - z*x**3 + x**4, t), Poly(-x**2 + 4*x**2*z**2, t))
    assert splitfactor_sqf(r, DE, coefficientD=True) == \
        (((Poly(x*z - x**2 - z*x**3 + x**4, t), 1),), ((Poly(-x**2 + 4*x**2*z**2, t), 1),))
    assert splitfactor(Poly(0, t), DE) == (Poly(0, t), Poly(1, t))
    assert splitfactor_sqf(Poly(0, t), DE) == (((Poly(0, t), 1),), ())