Did I find the right examples for you? yes no

# sympy.integrals.transforms.inverse_mellin_transform

All Samples(10)  |  Call(6)  |  Derive(0)  |  Import(4)

src/s/y/sympy-HEAD/sympy/integrals/meijerint.py   sympy(Download)
```        return None
_debug('Trying recursive mellin transform method.')
from sympy.integrals.transforms import (mellin_transform,
inverse_mellin_transform, IntegralTransformError,
MellinTransformStripError)
```
```        # XXX should this be in inverse_mellin_transform?
try:
return inverse_mellin_transform(F, s, x, strip,
as_meijerg=True, needeval=True)
except MellinTransformStripError:
return inverse_mellin_transform(
simplify(cancel(expand(F))), s, x, strip,
```

src/s/y/sympy-0.7.5/sympy/integrals/meijerint.py   sympy(Download)
```        return None
_debug('Trying recursive mellin transform method.')
from sympy.integrals.transforms import (mellin_transform,
inverse_mellin_transform, IntegralTransformError,
MellinTransformStripError)
```
```        # XXX should this be in inverse_mellin_transform?
try:
return inverse_mellin_transform(F, s, x, strip,
as_meijerg=True, needeval=True)
except MellinTransformStripError:
return inverse_mellin_transform(
simplify(cancel(expand(F))), s, x, strip,
```

src/s/y/sympy-HEAD/sympy/integrals/tests/test_transforms.py   sympy(Download)
```from sympy.integrals.transforms import (mellin_transform,
inverse_mellin_transform, laplace_transform, inverse_laplace_transform,
fourier_transform, inverse_fourier_transform,
sine_transform, inverse_sine_transform,
cosine_transform, inverse_cosine_transform,
```
```        (-2**s*sqrt(pi)*gamma(s/2 + S(1)/2)/(
2*s*gamma(-s/2 + 1)), (-1, 0), True)
assert inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2)
/(2*s*gamma(-s/2 + 1)), s, x, (-1, 0)) \
== Si(x)
```

src/s/y/sympy-0.7.5/sympy/integrals/tests/test_transforms.py   sympy(Download)
```from sympy.integrals.transforms import (mellin_transform,
inverse_mellin_transform, laplace_transform, inverse_laplace_transform,
fourier_transform, inverse_fourier_transform,
sine_transform, inverse_sine_transform,
cosine_transform, inverse_cosine_transform,
```
```        (-2**s*sqrt(pi)*gamma(s/2 + S(1)/2)/(
2*s*gamma(-s/2 + 1)), (-1, 0), True)
assert inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2)
/(2*s*gamma(-s/2 + 1)), s, x, (-1, 0)) \
== Si(x)
```