Did I find the right examples for you? yes no

All Samples(18)  |  Call(16)  |  Derive(0)  |  Import(2)

src/s/y/sympy-HEAD/sympy/integrals/tests/test_transforms.py   sympy(Download)
from sympy.integrals.transforms import (mellin_transform,
    inverse_mellin_transform, laplace_transform, inverse_laplace_transform,
    fourier_transform, inverse_fourier_transform,
    sine_transform, inverse_sine_transform,
    cosine_transform, inverse_cosine_transform,
        (MellinTransform(f(x), x, s) + gamma(s), (0, oo), True)
 
    assert laplace_transform(2*f(x), x, s) == 2*LaplaceTransform(f(x), x, s)
    # TODO test derivative and other rules when implemented
 
 
    # TODO LT of Si, Shi, Chi is a mess ...
    assert laplace_transform(Ci(x), x, s) == (-log(1 + s**2)/2/s, 0, True)
    assert laplace_transform(expint(a, x), x, s) == \
        (lerchphi(s*polar_lift(-1), 1, a), 0, S(0) < re(a))
    assert laplace_transform(expint(1, x), x, s) == (log(s + 1)/s, 0, True)

src/s/y/sympy-0.7.5/sympy/integrals/tests/test_transforms.py   sympy(Download)
from sympy.integrals.transforms import (mellin_transform,
    inverse_mellin_transform, laplace_transform, inverse_laplace_transform,
    fourier_transform, inverse_fourier_transform,
    sine_transform, inverse_sine_transform,
    cosine_transform, inverse_cosine_transform,
        (MellinTransform(f(x), x, s) + gamma(s), (0, oo), True)
 
    assert laplace_transform(2*f(x), x, s) == 2*LaplaceTransform(f(x), x, s)
    # TODO test derivative and other rules when implemented
 
 
    # TODO LT of Si, Shi, Chi is a mess ...
    assert laplace_transform(Ci(x), x, s) == (-log(1 + s**2)/2/s, 0, True)
    assert laplace_transform(expint(a, x), x, s) == \
        (lerchphi(s*polar_lift(-1), 1, a), 0, S(0) < re(a))
    assert laplace_transform(expint(1, x), x, s) == (log(s + 1)/s, 0, True)