Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(3)  |  Call(0)  |  Derive(0)  |  Import(3)
1d-solver generating pairs of approximative root and error.

Needs starting point x0 close to the root.
Uses modified Newton's method that converges fast regardless of the
multiplicity of the root.

Pro:

* converges fast for multiple roots
(more...)

src/s/y/sympy-HEAD/sympy/mpmath/tests/test_rootfinding.py   sympy(Download)
from sympy.mpmath import *
from sympy.mpmath.calculus.optimization import Secant, Muller, Bisection, Illinois, \
    Pegasus, Anderson, Ridder, ANewton, Newton, MNewton, MDNewton
 
from sympy.utilities.pytest import XFAIL

src/s/y/sympy-polys-HEAD/sympy/mpmath/tests/test_rootfinding.py   sympy-polys(Download)
from sympy.mpmath import *
from sympy.mpmath.calculus.optimization import Secant, Muller, Bisection, Illinois, \
    Pegasus, Anderson, Ridder, ANewton, Newton, MNewton, MDNewton
 
def test_findroot():

src/s/y/sympy-0.7.5/sympy/mpmath/tests/test_rootfinding.py   sympy(Download)
from sympy.mpmath import *
from sympy.mpmath.calculus.optimization import Secant, Muller, Bisection, Illinois, \
    Pegasus, Anderson, Ridder, ANewton, Newton, MNewton, MDNewton
 
def test_findroot():