Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(4)  |  Call(3)  |  Derive(0)  |  Import(1)
Computes the factorial, `x!`. For integers `n \ge 0`, we have
`n! = 1 \cdot 2 \cdots (n-1) \cdot n` and more generally the factorial
is defined for real or complex `x` by `x! = \Gamma(x+1)`.


Basic values and limits::

    >>> from mpmath import *
    >>> mp.dps = 15; mp.pretty = True(more...)

                def f(x, **kwargs):
            if type(x) not in ctx.types:
                x = ctx.convert(x)
            prec, rounding = ctx._prec_rounding
            if kwargs:
                prec = kwargs.get('prec', prec)
                if 'dps' in kwargs:
                    prec = dps_to_prec(kwargs['dps'])
                rounding = kwargs.get('rounding', rounding)
            if hasattr(x, '_mpf_'):
                    return ctx.make_mpf(mpf_f(x._mpf_, prec, rounding))
                except ComplexResult:
                    # Handle propagation to complex
                    if ctx.trap_complex:
                    return ctx.make_mpc(mpc_f((x._mpf_, fzero), prec, rounding))
            elif hasattr(x, '_mpc_'):
                return ctx.make_mpc(mpc_f(x._mpc_, prec, rounding))
            raise NotImplementedError("%s of a %s" % (name, type(x)))

src/s/y/sympy-0.7.5/sympy/liealgebras/weyl_group.py   sympy(Download)
from sympy.core.numbers import igcd
from .cartan_type import CartanType
from sympy.mpmath import fac
from operator import itemgetter
from itertools import groupby
        n = self.cartan_type.rank()
        if self.cartan_type.series == "A":
            return fac(n+1)
        if self.cartan_type.series == "B" or self.cartan_type.series ==  "C":
            return fac(n)*(2**n)
        if self.cartan_type.series == "D":
            return fac(n)*(2**(n-1))