Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(20)  |  Call(18)  |  Derive(0)  |  Import(2)
long(x=0) -> long
long(x, base=10) -> long

Convert a number or string to a long integer, or return 0L if no arguments
are given.  If x is floating point, the conversion truncates towards zero.

If x is not a number or if base is given, then x must be a string or
Unicode object representing an integer literal in the given base.  The
literal can be preceded by '+' or '-' and be surrounded by whitespace.
The base defaults to 10.  Valid bases are 0 and 2-36.  Base 0 means to(more...)

src/s/y/sympy-polys-HEAD/sympy/core/evalf.py   sympy-polys(Download)
from sympy.mpmath.libmp import (mpf_pi, mpf_log, mpf_pow, mpf_sin, mpf_cos,
        mpf_atan, mpf_atan2, mpf_e, mpf_exp, from_man_exp, from_int)
from sympy.mpmath.libmp.backend import MPZ
from sympy.mpmath import nsum
from sympy.mpmath import inf as mpmath_inf
    direction = 0
    # Empty product is 1
    man, exp, bc = MPZ(1), 0, 1
    direction = 0
    complex_factors = []
        # make existing real scalar look like an imaginary and
        # multiply by the remaining complex numbers
        re, im = v, (0, MPZ(0), 0, 0)
        for wre, wim, wre_acc, wim_acc in complex_factors:
            # acc is the overall accuracy of the product; we aren't
    # Direct summation if geometric or faster
    if h > 0 or (h == 0 and abs(g) > 1):
        one = MPZ(1) << prec
        term = expr.subs(n, 0)
        term = (MPZ(term.p) << prec) // term.q

src/s/y/sympy-HEAD/sympy/core/evalf.py   sympy(Download)
        mpf_sqrt, normalize, round_nearest, to_int, to_str)
from sympy.mpmath.libmp import bitcount as mpmath_bitcount
from sympy.mpmath.libmp.backend import MPZ
from sympy.mpmath.libmp.libmpc import _infs_nan
from sympy.mpmath.libmp.libmpf import dps_to_prec
 
    # Empty product is 1
    start = man, exp, bc = MPZ(1), 0, 1
 
    # First, we multiply all pure real or pure imaginary numbers.
        if (man, exp, bc) != start:
            # there was a real part; give it an imaginary part
            re, im = (sign, man, exp, bitcount(man)), (0, MPZ(0), 0, 0)
            i0 = 0
        else:
    if h > 0 or (h == 0 and abs(g) > 1):
        term = expr.subs(n, 0)
        term = (MPZ(term.p) << prec) // term.q
        s = term
        k = 1
        while abs(term) > 5:
            term *= MPZ(func1(k - 1))