Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(48)  |  Call(42)  |  Derive(0)  |  Import(6)
Represent the argument on a quotient of the riemann surface of the
logarithm. That is, given a period P, always return a value in
(-P/2, P/2], by using exp(P*I) == 1.

>>> from sympy import exp, exp_polar, periodic_argument, unbranched_argument
>>> from sympy import I, pi
>>> unbranched_argument(exp(5*I*pi))
pi
>>> unbranched_argument(exp_polar(5*I*pi))
5*pi(more...)

src/s/y/sympy-HEAD/sympy/integrals/transforms.py   sympy(Download)
def _laplace_transform(f, t, s_, simplify=True):
    """ The backend function for Laplace transforms. """
    from sympy import (re, Max, exp, pi, Abs, Min, periodic_argument as arg,
                       cos, Wild, symbols, polar_lift)
    s = Dummy('s')
            aux_ = []
            for d in disjuncts(c):
                m = d.match(abs(arg((s + w3)**p*q, w1)) < w2)
                if not m:
                    m = d.match(abs(arg((s + w3)**p*q, w1)) <= w2)
                if not m:
                    m = d.match(abs(arg((polar_lift(s + w3))**p*q, w1)) < w2)
                if not m:
                    m = d.match(abs(arg((polar_lift(s + w3))**p*q, w1)) <= w2)

src/s/y/sympy-0.7.5/sympy/integrals/transforms.py   sympy(Download)
def _laplace_transform(f, t, s_, simplify=True):
    """ The backend function for Laplace transforms. """
    from sympy import (re, Max, exp, pi, Abs, Min, periodic_argument as arg,
                       cos, Wild, symbols, polar_lift)
    s = Dummy('s')
            aux_ = []
            for d in disjuncts(c):
                m = d.match(abs(arg((s + w3)**p*q, w1)) < w2)
                if not m:
                    m = d.match(abs(arg((s + w3)**p*q, w1)) <= w2)
                if not m:
                    m = d.match(abs(arg((polar_lift(s + w3))**p*q, w1)) < w2)
                if not m:
                    m = d.match(abs(arg((polar_lift(s + w3))**p*q, w1)) <= w2)

src/s/y/sympy-HEAD/sympy/integrals/meijerint.py   sympy(Download)
    x <= y
    """
    from sympy import (
        symbols, Wild, Eq, unbranched_argument, exp_polar, pi, I,
        periodic_argument, oo, polar_lift)

src/s/y/sympy-0.7.5/sympy/integrals/meijerint.py   sympy(Download)
    x <= y
    """
    from sympy import (
        symbols, Wild, Eq, unbranched_argument, exp_polar, pi, I,
        periodic_argument, oo, polar_lift)

src/s/y/sympy-HEAD/sympy/functions/elementary/tests/test_complexes.py   sympy(Download)
def test_periodic_argument():
    from sympy import (periodic_argument, unbranched_argument, oo,
                       principal_branch, polar_lift, pi)
    x = Symbol('x')
    p = Symbol('p', positive=True)
 
    assert unbranched_argument(2 + I) == periodic_argument(2 + I, oo)
    assert unbranched_argument(1 + x) == periodic_argument(1 + x, oo)
    assert N_equals(unbranched_argument((1 + I)**2), pi/2)
    assert N_equals(unbranched_argument((1 - I)**2), -pi/2)
    assert N_equals(periodic_argument((1 + I)**2, 3*pi), pi/2)
    assert N_equals(periodic_argument((1 - I)**2, 3*pi), -pi/2)
 

src/s/y/sympy-0.7.5/sympy/functions/elementary/tests/test_complexes.py   sympy(Download)
def test_periodic_argument():
    from sympy import (periodic_argument, unbranched_argument, oo,
                       principal_branch, polar_lift, pi)
    x = Symbol('x')
    p = Symbol('p', positive=True)
 
    assert unbranched_argument(2 + I) == periodic_argument(2 + I, oo)
    assert unbranched_argument(1 + x) == periodic_argument(1 + x, oo)
    assert N_equals(unbranched_argument((1 + I)**2), pi/2)
    assert N_equals(unbranched_argument((1 - I)**2), -pi/2)
    assert N_equals(periodic_argument((1 + I)**2, 3*pi), pi/2)
    assert N_equals(periodic_argument((1 - I)**2, 3*pi), -pi/2)