Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(3)  |  Call(2)  |  Derive(0)  |  Import(1)
A Dyadic object.

Kane, T., Levinson, D. Dynamics Theory and Applications. 1985 McGraw-Hill

A more powerful way to represent a rigid body's inertia. While it is more
complex, by choosing Dyadic components to be in body fixed basis vectors,
the resulting matrix is equivalent to the inertia tensor.

src/s/y/sympy-HEAD/sympy/physics/mechanics/tests/test_rigidbody.py   sympy(Download)
from sympy import symbols
from sympy.physics.mechanics import Point, ReferenceFrame, Dyadic, RigidBody
from sympy.physics.mechanics import dynamicsymbols, outer
from sympy.physics.mechanics import inertia_of_point_mass
    P = Point('P')
    P2 = Point('P2')
    I = Dyadic([])
    I2 = Dyadic([])
    B = RigidBody('B', P, A, m, (I, P))
    assert B.mass == m
    assert B.frame == A
    assert B.masscenter == P
    assert B.inertia == (I, B.masscenter)