Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(46)  |  Call(46)  |  Derive(0)  |  Import(0)
Sets the velocity Vector of this Point in a ReferenceFrame.

Parameters
==========

value : Vector
    The vector value of this point's velocity in the frame
frame : ReferenceFrame
    The frame in which this point's velocity is defined
(more...)

src/p/y/pydy-tutorial-pycon-2014-HEAD/notebooks/solution/kinematics.py   pydy-tutorial-pycon-2014(Download)
# =================
 
ankle.set_vel(inertial_frame, 0)
 
lower_leg_mass_center.v2pt_theory(ankle, inertial_frame, lower_leg_frame)

src/s/y/sympy-HEAD/sympy/physics/mechanics/tests/test_point.py   sympy(Download)
    P = O.locatenew('P', B.x)
    P.set_vel(B, 0)
    O.set_vel(N, 0)
    assert P.v1pt_theory(O, N, B) == qd * B.y
    O.set_vel(N, N.x)
    P = O.locatenew('P', B.x)
    P.set_vel(B, 0)
    O.set_vel(N, 0)
    assert P.a1pt_theory(O, N, B) == -(qd**2) * B.x + qdd * B.y
    P.set_vel(B, q2d * B.z)
    assert P.a1pt_theory(O, N, B) == -(qd**2) * B.x + qdd * B.y + q2dd * B.z
    O.set_vel(N, q2d * B.x)
    O = Point('O')
    P = O.locatenew('P', 0)
    O.set_vel(N, 0)
    assert P.v2pt_theory(O, N, B) == 0
    P = O.locatenew('P', B.x)

src/s/y/sympy-HEAD/sympy/physics/mechanics/tests/test_rigidbody.py   sympy(Download)
    # Testing linear momentum function assuming A2 is the inertial frame
    N = ReferenceFrame('N')
    P2.set_vel(N, v1 * N.x + v2 * N.y + v3 * N.z)
    assert B.linear_momentum(N) == m2 * (v1 * N.x + v2 * N.y + v3 * N.z)
 
    Inertia_tuple = (I, P)
    B = RigidBody('B', P, b, M, Inertia_tuple)
    P.set_vel(N, v * b.x)
    assert B.angular_momentum(P, N) == omega * b.x
    O = Point('O')
    O.set_vel(N, v * b.x)
    B = A.orientnew('B', 'axis', [q1, A.x])
    O = Point('O')
    O.set_vel(A, q2*A.x + q3*A.y + q4*A.z)
    P = O.locatenew('P', p1*B.x + p2*B.y + p3*B.z)
    I = outer(B.x, B.x)

src/s/y/sympy-HEAD/sympy/physics/mechanics/tests/test_functions.py   sympy(Download)
 
    C = Point('C')
    C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x))
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)
def test_linear_momentum():
    N = ReferenceFrame('N')
    Ac = Point('Ac')
    Ac.set_vel(N, 25 * N.y)
    I = outer(N.x, N.x)
    N = ReferenceFrame('N')
    O = Point('O')
    O.set_vel(N, 0 * N.x)
    Ac = O.locatenew('Ac', l1 * N.x)
    P = Ac.locatenew('P', l1 * N.x)
    N = ReferenceFrame('N')
    O = Point('O')
    O.set_vel(N, 0 * N.x)
    Ac = O.locatenew('Ac', l1 * N.x)
    P = Ac.locatenew('P', l1 * N.x)
    N = ReferenceFrame('N')
    O = Point('O')
    O.set_vel(N, 0 * N.x)
    Ac = O.locatenew('Ac', l1 * N.x)
    P = Ac.locatenew('P', l1 * N.x)

src/s/y/sympy-HEAD/sympy/physics/mechanics/tests/test_particle.py   sympy(Download)
    O = Point('O')
    P2.set_pos(O, r * N.y)
    P2.set_vel(N, v1 * N.x)
    assert p.linear_momentum(N) == m2 * v1 * N.x
    assert p.angular_momentum(O, N) == -m2 * r *v1 * N.z
    P2.set_vel(N, v2 * N.y)
    assert p.linear_momentum(N) == m2 * v2 * N.y
    assert p.angular_momentum(O, N) == 0
    P2.set_vel(N, v3 * N.z)
    assert p.linear_momentum(N) == m2 * v3 * N.z
    assert p.angular_momentum(O, N) == m2 * r * v3 * N.x
    P2.set_vel(N, v1 * N.x + v2 * N.y + v3 * N.z)
    assert p.linear_momentum(N) == m2 * (v1 * N.x + v2 * N.y + v3 * N.z)
    assert p.angular_momentum(O, N) == m2 * r * (v3 * N.x - v1 * N.z)

src/s/y/sympy-HEAD/sympy/physics/mechanics/tests/test_kane2.py   sympy(Download)
    # u[3], u[4] and u[5] are generalized dependent speeds.
    P = Point('P')
    P.set_vel(N, ua[0]*A.x + ua[1]*A.y + ua[2]*A.z)
    O = P.locatenew('O', q[3]*A.z + r*sin(q[1])*A.y)
    O.set_vel(N, u[3]*A.x + u[4]*A.y + u[5]*A.z)
    # define points D, S*, Q on frame A and their velocities
    pD = Point('D')
    pD.set_vel(A, 0)
    # u3 will not change v_D_F since wheels are still assumed to roll without slip.
    pD.set_vel(F, u2 * A.y)
    ## --- define points D, S*, Q on frame A and their velocities ---
    pD = Point('D')
    pD.set_vel(A, 0)
    # u3 will not change v_D_F since wheels are still assumed to roll w/o slip
    pD.set_vel(F, u2 * A.y)

src/p/y/pydy-code-gen-0.1.0/pydy_code_gen/tests/whipple.py   pydy-code-gen(Download)
 
# origin is fixed
no.set_vel(N, 0.0 * N['1'])
 
# mass centers
do.set_vel(N, do.pos_from(no).dt(N))
 
# wheel contact velocities
dn.set_vel(N, 0)
fn.v2pt_theory(fo, N, F)
 

src/s/y/sympy-HEAD/sympy/physics/mechanics/tests/test_kane.py   sympy(Download)
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, u * N.x)
 
    kd = [qd - u]
    P1 = Point('P1')
    P2 = Point('P2')
    P1.set_vel(N, u1 * N.x)
    P2.set_vel(N, (u1 + u2) * N.x)
    kd = [q1d - u1, q2d - u2]
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y)
    kd = [qd - u]
 
    # Finally we form the velocity and acceleration of the disc.
    C = Point('C')
    C.set_vel(N, 0)
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)

src/s/y/sympy-HEAD/sympy/physics/mechanics/tests/test_lagrange.py   sympy(Download)
    # is created. Finally, we create the disc.
    Do = Point('Do')
    Do.set_vel(N, yd * A.x)
    I = m * R**2 / 2 * B.z | B.z
    D = RigidBody('D', Do, B, m, (I, Do))
    # velocity is then determined by the 'two point formula'.
    O = Point('O')
    O.set_vel(N, 0)
    P = O.locatenew('P', l * A.x)
    P.v2pt_theory(O, N, A)
    R = P.locatenew('R', l * B.x)
 
    O.set_vel(N, 0)
    P.v2pt_theory(O, N, A)
    R.v2pt_theory(P, N, B)
    # Finally we form the velocity and acceleration of the disc.
    C = Point('C')
    C.set_vel(N, 0)
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)

src/p/y/pydy-code-gen-0.1.0/pydy_code_gen/tests/models.py   pydy-code-gen(Download)
 
    origin = me.Point('origin')
    origin.set_vel(ceiling, 0)
 
    center = origin.locatenew('center', position * ceiling.x)
    I = me.ReferenceFrame('I')
    O = me.Point('O')
    O.set_vel(I, 0)
 
    P0 = me.Point('P0')
    P0.set_pos(O, q[0] * I.x)
    P0.set_vel(I, u[0] * I.x)