Did I find the right examples for you? yes no      Crawl my project      Python Jobs

All Samples(6)  |  Call(3)  |  Derive(0)  |  Import(3)
Class for the Wigner-3j symbols

Wigner 3j-symbols are coefficients determined by the coupling of
two angular momenta. When created, they are expressed as symbolic
quantities that, for numerical parameters, can be evaluated using the
``.doit()`` method [1]_.

Parameters
==========
(more...)

src/s/y/sympy-HEAD/sympy/core/tests/test_args.py   sympy(Download)
def test_sympy__physics__quantum__cg__Wigner3j():
    from sympy.physics.quantum.cg import Wigner3j
    assert _test_args(Wigner3j(6, 0, 4, 0, 2, 0))
 
 

src/s/y/sympy-HEAD/sympy/physics/quantum/tests/test_printing.py   sympy(Download)
"""
from sympy.physics.quantum.anticommutator import AntiCommutator
from sympy.physics.quantum.cg import CG, Wigner3j, Wigner6j, Wigner9j
from sympy.physics.quantum.commutator import Commutator
from sympy.physics.quantum.constants import hbar
def test_cg():
    cg = CG(1, 2, 3, 4, 5, 6)
    wigner3j = Wigner3j(1, 2, 3, 4, 5, 6)
    wigner6j = Wigner6j(1, 2, 3, 4, 5, 6)
    wigner9j = Wigner9j(1, 2, 3, 4, 5, 6, 7, 8, 9)
    e1 = Dagger(AntiCommutator(Operator('A') + Operator('B'), Pow(DifferentialOperator(Derivative(f(x), x), f(x)), 3))*TensorProduct(Jz**2, Operator('A') + Operator('B')))*(JzBra(1, 0) + JzBra(1, 1))*(JzKet(0, 0) + JzKet(1, -1))
    e2 = Commutator(Jz**2, Operator('A') + Operator('B'))*AntiCommutator(Dagger(Operator('C')*Operator('D')), Operator('E').inv()**2)*Dagger(Commutator(Jz, J2))
    e3 = Wigner3j(1, 2, 3, 4, 5, 6)*TensorProduct(Commutator(Operator('A') + Dagger(Operator('B')), Operator('C') + Operator('D')), Jz - J2)*Dagger(OuterProduct(Dagger(JzBra(1, 1)), JzBra(1, 0)))*TensorProduct(JzKetCoupled(1, 1, (1, 1)) + JzKetCoupled(1, 0, (1, 1)), JzKetCoupled(1, -1, (1, 1)))
    e4 = (ComplexSpace(1)*ComplexSpace(2) + FockSpace()**2)*(L2(Interval(
        0, oo)) + HilbertSpace())

src/s/y/sympy-HEAD/sympy/physics/quantum/tests/test_cg.py   sympy(Download)
from __future__ import division
from sympy import S, sqrt, Sum, symbols
from sympy.physics.quantum.cg import Wigner3j, Wigner6j, Wigner9j, CG, cg_simp
from sympy.functions.special.tensor_functions import KroneckerDelta