Did I find the right examples for you? yes no

All Samples(27)  |  Call(27)  |  Derive(0)  |  Import(0)
Returns a polynomial ring, i.e. `K[X]`. 

src/s/y/sympy-HEAD/sympy/polys/agca/tests/test_ideals.py   sympy(Download)
def test_ideal_operations():
    R = QQ.old_poly_ring(x, y)
    I = R.ideal(x)
    J = R.ideal(y)
    S = R.ideal(x*y)
def test_nontriv_global():
    R = QQ.old_poly_ring(x, y, z)
 
    def contains(I, f):
        return R.ideal(*I).contains(f)
def test_nontriv_local():
    R = QQ.old_poly_ring(x, y, z, order=ilex)
 
    def contains(I, f):
        return R.ideal(*I).contains(f)
def test_intersection():
    R = QQ.old_poly_ring(x, y, z)
    # SCA, example 1.8.11
    assert R.ideal(x, y).intersect(R.ideal(y**2, z)) == R.ideal(y**2, y*z, x*z)
 
    assert R.ideal(x, y).intersect(R.ideal()).is_zero()
 
    R = QQ.old_poly_ring(x, y, z, order="ilex")

src/s/y/sympy-HEAD/sympy/polys/agca/tests/test_modules.py   sympy(Download)
 
    assert M.convert([x, x, x]) / QQ.old_poly_ring(x).convert(x) == [1, 1, 1]
    R = QQ.old_poly_ring(x, order="ilex")
    assert R.free_module(1).convert([x]) / R.convert(x) == [1]
 
 
def test_FreeModule():
    M1 = FreeModule(QQ.old_poly_ring(x), 2)
    assert M1 == FreeModule(QQ.old_poly_ring(x), 2)
    assert M1 != FreeModule(QQ.old_poly_ring(y), 2)
def test_FreeModule():
    M1 = FreeModule(QQ.old_poly_ring(x), 2)
    assert M1 == FreeModule(QQ.old_poly_ring(x), 2)
    assert M1 != FreeModule(QQ.old_poly_ring(y), 2)
    assert M1 != FreeModule(QQ.old_poly_ring(x), 3)