Did I find the right examples for you? yes no

All Samples(380)  |  Call(0)  |  Derive(0)  |  Import(380)
SymPy is a Python library for symbolic mathematics. It aims to become a
full-featured computer algebra system (CAS) while keeping the code as
simple as possible in order to be comprehensible and easily extensible.
SymPy is written entirely in Python and does not require any external
libraries, except optionally for plotting support.

See the webpage for more information and documentation:

    http://code.google.com/p/sympy/

src/s/y/sympy-polys-HEAD/examples/beginner/functions.py   sympy-polys(Download)
"""
 
import sympy
 
def main():

src/s/y/sympy-polys-HEAD/examples/beginner/expansion.py   sympy-polys(Download)
"""
 
import sympy
 
def main():

src/s/y/sympy-polys-HEAD/examples/beginner/differentiation.py   sympy-polys(Download)
"""
 
import sympy
 
def main():

src/s/y/sympy-polys-HEAD/examples/beginner/basic.py   sympy-polys(Download)
"""
 
import sympy
 
def main():

src/s/y/sympy-HEAD/examples/all.py   sympy(Download)
sympy_dir = os.path.normpath(sympy_dir)
sys.path.insert(0, sympy_dir)
import sympy
 
TERMINAL_EXAMPLES = [

src/n/i/nipy-0.3.0/examples/formula/parametric_design.py   nipy(Download)
 
import numpy as np
import sympy
 
from nipy.algorithms.statistics.api import Formula, make_recarray

src/a/r/arraytool-HEAD/arraytool/src/other_examples/filtertool.py   arraytool(Download)
from __future__ import division
import numpy as np
import sympy as sp
import scipy.signal as signal
import matplotlib.pyplot as plt

src/p/y/py4science-HEAD/book/examples/poly_univar.py   py4science(Download)
 
import numpy as np
import sympy as sym
 
#-----------------------------------------------------------------------------

src/p/y/pyadolc-HEAD/examples/comparison_with_sympy.py   pyadolc(Download)
"""
 
import sympy
import adolc
import numpy

src/s/a/sage-HEAD/src/sage/symbolic/expression_conversions.py   sage(Download)
            x + 2
        """
        import sympy
        operator = arithmetic_operators[operator]
        ops = [sympy.sympify(self(a), evaluate=False) for a in ex.operands()]
            <class 'sympy.core.symbol.Symbol'>
        """
        import sympy
        return sympy.symbols(repr(ex))
 
        f = operator._sympy_init_()
        g = ex.operands()
        import sympy
 
        f_sympy = getattr(sympy, f, None)

Previous  1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  Next