Did I find the right examples for you? yes no

# sympy

All Samples(380)  |  Call(0)  |  Derive(0)  |  Import(380)
```SymPy is a Python library for symbolic mathematics. It aims to become a
full-featured computer algebra system (CAS) while keeping the code as
simple as possible in order to be comprehensible and easily extensible.
SymPy is written entirely in Python and does not require any external
libraries, except optionally for plotting support.

```

```"""

import sympy

def main():
```

```"""

import sympy

def main():
```

```"""

import sympy

def main():
```

```"""

import sympy

def main():
```

```sympy_dir = os.path.normpath(sympy_dir)
sys.path.insert(0, sympy_dir)
import sympy

TERMINAL_EXAMPLES = [
```

```
import numpy as np
import sympy

from nipy.algorithms.statistics.api import Formula, make_recarray
```

```from __future__ import division
import numpy as np
import sympy as sp
import scipy.signal as signal
import matplotlib.pyplot as plt
```

```
import numpy as np
import sympy as sym

#-----------------------------------------------------------------------------
```

```"""

import sympy
import numpy
```

```            x + 2
"""
import sympy
operator = arithmetic_operators[operator]
ops = [sympy.sympify(self(a), evaluate=False) for a in ex.operands()]
```
```            <class 'sympy.core.symbol.Symbol'>
"""
import sympy
return sympy.symbols(repr(ex))

```
```        f = operator._sympy_init_()
g = ex.operands()
import sympy

f_sympy = getattr(sympy, f, None)
```

Previous  1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  Next