Did I find the right examples for you? yes no

All Samples(2)  |  Call(1)  |  Derive(0)  |  Import(1)
Return dy/dx assuming that y and any other variables given in dep
depend on x.

>>> from sympy.abc import x, y, a
>>> from sympy.geometry.util import idiff

>>> idiff(x**2 + y**2 - 4, y, x)
-x/y
>>> idiff(x + a + y, y, x)
-1(more...)

        def idiff(eq, y, x, dep=None):
    """Return dy/dx assuming that y and any other variables given in dep
    depend on x.

    >>> from sympy.abc import x, y, a
    >>> from sympy.geometry.util import idiff

    >>> idiff(x**2 + y**2 - 4, y, x)
    -x/y
    >>> idiff(x + a + y, y, x)
    -1
    >>> idiff(x + a + y, y, x, [a])
    -Derivative(a, x) - 1

    See Also
    ========

    sympy.core.function.Derivative

    """
    if not dep:
        dep = []
    dep = set(dep)
    dep.add(y)

    f = dict([(s, Function(
        s.name)(x)) for s in eq.atoms(Symbol) if s != x and s in dep])
    dydx = Function(y.name)(x).diff(x)
    return solve(eq.subs(f).diff(x), dydx)[0].subs(
        [(b, a) for a, b in f.items()])
        


src/s/y/sympy-HEAD/sympy/geometry/ellipse.py   sympy(Download)
from .point import Point
from .line import LinearEntity, Line
from .util import _symbol, idiff
 
import random
            x, y = Dummy('x'), Dummy('y')
            eq = self.equation(x, y)
            dydx = idiff(eq, y, x)
            slope = Line(p, Point(x, y)).slope
            tangent_points = solve([slope - dydx, eq], [x, y])