Did I find the right examples for you? yes no

# util.idiff

All Samples(2)  |  Call(1)  |  Derive(0)  |  Import(1)
```Return dy/dx assuming that y and any other variables given in dep
depend on x.

>>> from sympy.abc import x, y, a
>>> from sympy.geometry.util import idiff

>>> idiff(x**2 + y**2 - 4, y, x)
-x/y
>>> idiff(x + a + y, y, x)
-1(more...)
```

```        def idiff(eq, y, x, dep=None):
"""Return dy/dx assuming that y and any other variables given in dep
depend on x.

>>> from sympy.abc import x, y, a
>>> from sympy.geometry.util import idiff

>>> idiff(x**2 + y**2 - 4, y, x)
-x/y
>>> idiff(x + a + y, y, x)
-1
>>> idiff(x + a + y, y, x, [a])
-Derivative(a, x) - 1

========

sympy.core.function.Derivative

"""
if not dep:
dep = []
dep = set(dep)

f = dict([(s, Function(
s.name)(x)) for s in eq.atoms(Symbol) if s != x and s in dep])
dydx = Function(y.name)(x).diff(x)
return solve(eq.subs(f).diff(x), dydx)[0].subs(
[(b, a) for a, b in f.items()])
```

```from .point import Point
from .line import LinearEntity, Line
from .util import _symbol, idiff

import random
```
```            x, y = Dummy('x'), Dummy('y')
eq = self.equation(x, y)
dydx = idiff(eq, y, x)
slope = Line(p, Point(x, y)).slope
tangent_points = solve([slope - dydx, eq], [x, y])
```