Did I find the right examples for you? yes no

# util.pairwise_hamming_distance

All Samples(2)  |  Call(1)  |  Derive(0)  |  Import(1)
```**Experimental function**.

Calculate hamming dissimilarity measure between two sets of
vectors.

Parameters
----------
array1 : (P1, D) array
P1 vectors of size D.
array2 : (P2, D) array(more...)
```

```        def pairwise_hamming_distance(array1, array2):
"""**Experimental function**.

Calculate hamming dissimilarity measure between two sets of
vectors.

Parameters
----------
array1 : (P1, D) array
P1 vectors of size D.
array2 : (P2, D) array
P2 vectors of size D.

Returns
-------
distance : (P1, P2) array of dtype float
2D ndarray with value at an index (i, j) representing the hamming
distance in the range [0, 1] between ith vector in array1 and jth
vector in array2.

"""
distance = (array1[:, None] != array2[None]).mean(axis=2)
return distance
```

```import numpy as np
from scipy.ndimage.filters import gaussian_filter

from ..util import img_as_float
```