""" An ANF to CNF Converter using a Dense/Sparse Strategy This converter is based on two converters. The first one, by Martin Albrecht, was based on [CB07]_, this is the basis of the "dense" part of the converter. It was later improved by Mate Soos. The second one, by Michael Brickenstein, uses a reduced truth table based approach and forms the "sparse" part of the converter. AUTHORS: - Martin Albrecht - (2008-09) initial version of 'anf2cnf.py' - Michael Brickenstein - (2009) 'cnf.py' for PolyBoRi - Mate Soos - (2010) improved version of 'anf2cnf.py' - Martin Albrecht - (2012) unified and added to Sage REFERENCES: .. [CB07] Nicolas Courtois, Gregory V. Bard: Algebraic Cryptanalysis of the Data Encryption Standard, In 11-th IMA Conference, Cirencester, UK, 18-20 December 2007, Springer LNCS 4887. See also http://eprint.iacr.org/2006/402/. Classes and Methods ------------------- """ ############################################################################## # Copyright (C) 2008-2009 Martin Albrecht <martinralbrecht@googlemail.com> # Copyright (C) 2009 Michael Brickenstein <brickenstein@mfo.de> # Copyright (C) 2010 Mate Soos # Copyright (C) 2012 Martin Albrecht <martinralbrecht@googlemail.com> # Distributed under the terms of the GNU General Public License (GPL) # The full text of the GPL is available at: # http://www.gnu.org/licenses/ ############################################################################## from random import Random from sage.rings.polynomial.pbori import if_then_else as ite from sage.rings.integer_ring import ZZ from sage.functions.other import ceil from sage.misc.cachefunc import cached_method, cached_function from sage.combinat.permutation import Permutations from sage.sat.converters import ANF2CNFConverter class CNFEncoder(ANF2CNFConverter): """ ANF to CNF Converter using a Dense/Sparse Strategy. This converter distinguishes two classes of polynomials. 1. Sparse polynomials are those with at most ``max_vars_sparse`` variables. Those are converted using reduced truth-tables based on PolyBoRi's internal representation. 2. Polynomials with more variables are converted by introducing new variables for monomials and by converting these linearised polynomials. Linearised polynomials are converted either by splitting XOR chains -- into chunks of length ``cutting_number`` -- or by constructing XOR clauses if the underlying solver supports it. This behaviour is disabled by passing ``use_xor_clauses=False``. .. automethod:: __init__ .. automethod:: __call__ """ def __init__(self, solver, ring, max_vars_sparse=6, use_xor_clauses=None, cutting_number=6, random_seed=16): """ Construct ANF to CNF converter over ``ring`` passing clauses to ``solver``. INPUT: - ``solver`` - a SAT-solver instance - ``ring`` - a :class:`sage.rins.polynomial.pbori.BooleanPolynomialRing` - ``max_vars_sparse`` - maximum number of variables for direct conversion - ``use_xor_clauses`` - use XOR clauses; if ``None`` use if ``solver`` supports it. (default: ``None``) - ``cutting_number`` - maximum length of XOR chains after splitting if XOR clauses are not supported (default: 6) - ``random_seed`` - the direct conversion method uses randomness, this sets the seed (default: 16) EXAMPLE: We compare the sparse and the dense strategies, sparse first:: sage: B.<a,b,c> = BooleanPolynomialRing() sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: fn = tmp_filename() sage: solver = DIMACS(filename=fn) sage: e = CNFEncoder(solver, B) sage: e.clauses_sparse(a*b + a + 1) sage: _ = solver.write() sage: print open(fn).read() p cnf 3 2 1 0 -2 0 sage: e.phi [None, a, b, c] Now, we convert using the dense strategy:: sage: B.<a,b,c> = BooleanPolynomialRing() sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: fn = tmp_filename() sage: solver = DIMACS(filename=fn) sage: e = CNFEncoder(solver, B) sage: e.clauses_dense(a*b + a + 1) sage: _ = solver.write() sage: print open(fn).read() p cnf 4 5 1 -4 0 2 -4 0 4 -1 -2 0 -4 -1 0 4 1 0 sage: e.phi [None, a, b, c, a*b] .. NOTE:: This constructer generates SAT variables for each Boolean polynomial variable. """ self.random_generator = Random(random_seed) self.one_set = ring.one().set() self.empty_set = ring.zero().set() self.solver = solver self.max_vars_sparse = max_vars_sparse self.cutting_number = cutting_number if use_xor_clauses is None: use_xor_clauses = hasattr(solver,"add_xor_clause") self.use_xor_clauses = use_xor_clauses self.ring = ring # If you change this, make sure we are calling m.index() # below, as this relies on phi being sorted like this. self._phi = [None] for x in sorted([x.lm() for x in self.ring.gens()], key=lambda x: x.index()): self.var(x) def var(self, m=None, decision=None): """ Return a *new* variable. This is a thin wrapper around the SAT-solvers function where we keep track of which SAT variable corresponds to which monomial. INPUT: - ``m`` - something the new variables maps to, usually a monomial - ``decision`` - is this variable a deicison variable? EXAMPLE:: sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: B.<a,b,c> = BooleanPolynomialRing() sage: ce = CNFEncoder(DIMACS(), B) sage: ce.var() 4 """ self._phi.append(m) return self.solver.var(decision=decision) @property def phi(self): """ Map SAT variables to polynomial variables. EXAMPLE:: sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: B.<a,b,c> = BooleanPolynomialRing() sage: ce = CNFEncoder(DIMACS(), B) sage: ce.var() 4 sage: ce.phi [None, a, b, c, None] """ return list(self._phi) ################################################## # Encoding based on polynomial roots ################################################## def zero_blocks(self, f): """ Divides the zero set of ``f`` into blocks. EXAMPLE:: sage: B.<a,b,c> = BooleanPolynomialRing() sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: e = CNFEncoder(DIMACS(), B) sage: sorted(e.zero_blocks(a*b*c)) [{c: 0}, {b: 0}, {a: 0}] .. note:: This function is randomised. """ variables = f.vars_as_monomial() space = variables.divisors() variables = list(variables.variables()) zeros = f.zeros_in(space) rest = zeros res = list() def choose(s): indices = [] assert not s.empty() nav = s.navigation() while not nav.constant(): e = nav.else_branch() t = nav.then_branch() if e.constant() and not e.terminal_one(): indices.append(nav.value()) nav = t else: if self.random_generator.randint(0,1): indices.append(nav.value()) nav = t else: nav = e assert nav.terminal_one() res = self.one_set for i in reversed(indices): res = ite(i, res, self.empty_set) return iter(res).next() while not rest.empty(): l = choose(rest) l_variables = set(l.variables()) block_dict = dict([(v, 1 if v in l_variables else 0) for v in variables]) l = l.set() self.random_generator.shuffle(variables) for v in variables: candidate = l.change(v.index()) if candidate.diff(zeros).empty(): l = l.union(candidate) del block_dict[v] rest = rest.diff(l) res.append(block_dict) return res def clauses_sparse(self, f): """ Convert ``f`` using the sparse strategy. INPUT: - ``f`` - a :class:`sage.rings.polynomial.pbori.BooleanPolynomial` EXAMPLE:: sage: B.<a,b,c> = BooleanPolynomialRing() sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: fn = tmp_filename() sage: solver = DIMACS(filename=fn) sage: e = CNFEncoder(solver, B) sage: e.clauses_sparse(a*b + a + 1) sage: _ = solver.write() sage: print open(fn).read() p cnf 3 2 1 0 -2 0 sage: e.phi [None, a, b, c] """ # we form an expression for a var configuration *not* lying in # the block it is evaluated to 0 by f, iff it is not lying in # any zero block of f+1 blocks = self.zero_blocks(f+1) C = [dict([(variable, 1-value) for (variable, value) in b.iteritems()]) for b in blocks ] def to_dimacs_index(v): return v.index()+1 def clause(c): return [to_dimacs_index(variable) if value == 1 else -to_dimacs_index(variable) for (variable, value) in c.iteritems()] for c in C: self.solver.add_clause(clause(c)) ################################################### # Indirect conversion, may add new variables ################################################### def clauses_dense(self, f): """ Convert ``f`` using the dense strategy. INPUT: - ``f`` - a :class:`sage.rings.polynomial.pbori.BooleanPolynomial` EXAMPLE:: sage: B.<a,b,c> = BooleanPolynomialRing() sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: fn = tmp_filename() sage: solver = DIMACS(filename=fn) sage: e = CNFEncoder(solver, B) sage: e.clauses_dense(a*b + a + 1) sage: _ = solver.write() sage: print open(fn).read() p cnf 4 5 1 -4 0 2 -4 0 4 -1 -2 0 -4 -1 0 4 1 0 sage: e.phi [None, a, b, c, a*b] """ equal_zero = not bool(f.constant_coefficient()) f = (f - f.constant_coefficient()) f = [self.monomial(m) for m in f] if self.use_xor_clauses: self.solver.add_xor_clause(f, equal_zero) elif f > self.cutting_number: for fpart, this_equal_zero in self.split_xor(f, equal_zero): ll = len(fpart) for p in self.permutations(ll, this_equal_zero): self.solver.add_clause([ p[i]*fpart[i] for i in range(ll) ]) else: ll = len(f) for p in self.permutations(ll, equal_zero): self.solver.add_clause([ p[i]*f[i] for i in range(ll) ]) @cached_method def monomial(self, m): """ Return SAT variable for ``m`` INPUT: - ``m`` - a monomial. OUTPUT: An index for a SAT variable corresponding to ``m``. EXAMPLE:: sage: B.<a,b,c> = BooleanPolynomialRing() sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: fn = tmp_filename() sage: solver = DIMACS(filename=fn) sage: e = CNFEncoder(solver, B) sage: e.clauses_dense(a*b + a + 1) sage: e.phi [None, a, b, c, a*b] If monomial is called on a new monomial, a new variable is created:: sage: e.monomial(a*b*c) 5 sage: e.phi [None, a, b, c, a*b, a*b*c] If monomial is called on a monomial that was queried before, the index of the old variable is returned and no new variable is created:: sage: e.monomial(a*b) 4 sage: e.phi [None, a, b, c, a*b, a*b*c] .. note:: For correctness, this function is cached. """ if m.deg() == 1: return m.index()+1 else: # we need to encode the relationship between the monomial # and its variables variables = [self.monomial(v) for v in m.variables()] monomial = self.var(m) # (a | -w) & (b | -w) & (w | -a | -b) <=> w == a*b for v in variables: self.solver.add_clause( (v, -monomial) ) self.solver.add_clause( tuple([monomial] + [-v for v in variables]) ) return monomial @cached_function def permutations(length, equal_zero): """ Return permutations of length ``length`` which are equal to zero if ``equal_zero`` and equal to one otherwise. A variable is false if the integer in its position is smaller than zero and true otherwise. INPUT: - ``length`` - the number of variables - ``equal_zero`` - should the sum be equal to zero? EXAMPLE:: sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: B.<a,b,c> = BooleanPolynomialRing() sage: ce = CNFEncoder(DIMACS(), B) sage: ce.permutations(3, True) [[-1, -1, -1], [1, 1, -1], [1, -1, 1], [-1, 1, 1]] sage: ce.permutations(3, False) [[1, -1, -1], [-1, 1, -1], [-1, -1, 1], [1, 1, 1]] """ E = [] for num_negated in range(0, length+1) : if (((num_negated % 2) ^ ((length+1) % 2)) == equal_zero) : continue start = [] for i in range(num_negated) : start.append(1) for i in range(length - num_negated) : start.append(-1) E.extend(Permutations(start)) return E def split_xor(self, monomial_list, equal_zero): """ Split XOR chains into subchains. INPUT: - ``monomial_list`` - a list of monomials - ``equal_zero`` - is the constant coefficient zero? EXAMPLE:: sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: B.<a,b,c,d,e,f> = BooleanPolynomialRing() sage: ce = CNFEncoder(DIMACS(), B, cutting_number=3) sage: ce.split_xor([1,2,3,4,5,6], False) [[[1, 7], False], [[7, 2, 8], True], [[8, 3, 9], True], [[9, 4, 10], True], [[10, 5, 11], True], [[11, 6], True]] sage: ce = CNFEncoder(DIMACS(), B, cutting_number=4) sage: ce.split_xor([1,2,3,4,5,6], False) [[[1, 2, 7], False], [[7, 3, 4, 8], True], [[8, 5, 6], True]] sage: ce = CNFEncoder(DIMACS(), B, cutting_number=5) sage: ce.split_xor([1,2,3,4,5,6], False) [[[1, 2, 3, 7], False], [[7, 4, 5, 6], True]] """ c = self.cutting_number nm = len(monomial_list) step = ceil((c-2)/ZZ(nm) * nm) M = [] new_variables = [] for j in range(0, nm, step): m = new_variables + monomial_list[j:j+step] if (j + step) < nm: new_variables = [self.var(None)] m += new_variables M.append([m, equal_zero]) equal_zero = True return M ################################################### # Highlevel Functions ################################################### def clauses(self, f): """ Convert ``f`` using the sparse strategy if ``f.nvariables()`` is at most ``max_vars_sparse`` and the dense strategy otherwise. INPUT: - ``f`` - a :class:`sage.rings.polynomial.pbori.BooleanPolynomial` EXAMPLE:: sage: B.<a,b,c> = BooleanPolynomialRing() sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: fn = tmp_filename() sage: solver = DIMACS(filename=fn) sage: e = CNFEncoder(solver, B, max_vars_sparse=2) sage: e.clauses(a*b + a + 1) sage: _ = solver.write() sage: print open(fn).read() p cnf 3 2 1 0 -2 0 sage: e.phi [None, a, b, c] sage: B.<a,b,c> = BooleanPolynomialRing() sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: fn = tmp_filename() sage: solver = DIMACS(filename=fn) sage: e = CNFEncoder(solver, B, max_vars_sparse=2) sage: e.clauses(a*b + a + c) sage: _ = solver.write() sage: print open(fn).read() p cnf 4 7 1 -4 0 2 -4 0 4 -1 -2 0 -4 -1 -3 0 4 1 -3 0 4 -1 3 0 -4 1 3 0 sage: e.phi [None, a, b, c, a*b] """ if f.nvariables() <= self.max_vars_sparse: self.clauses_sparse(f) else: self.clauses_dense(f) def __call__(self, F): """ Encode the boolean polynomials in ``F`` . INPUT: - ``F`` - an iterable of :class:`sage.rings.polynomial.pbori.BooleanPolynomial` OUTPUT: An inverse map int -> variable EXAMPLE:: sage: B.<a,b,c> = BooleanPolynomialRing() sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: fn = tmp_filename() sage: solver = DIMACS(filename=fn) sage: e = CNFEncoder(solver, B, max_vars_sparse=2) sage: e([a*b + a + 1, a*b+ a + c]) [None, a, b, c, a*b] sage: _ = solver.write() sage: print open(fn).read() p cnf 4 9 1 0 -2 0 1 -4 0 2 -4 0 4 -1 -2 0 -4 -1 -3 0 4 1 -3 0 4 -1 3 0 -4 1 3 0 sage: e.phi [None, a, b, c, a*b] """ res = [] for f in F: self.clauses(f) return self.phi #################################################### # Highlevel Functions ################################################### def to_polynomial(self, c): """ Convert clause to :class:`sage.rings.polynomial.pbori.BooleanPolynomial` INPUT: - ``c`` - a clause EXAMPLE:: sage: B.<a,b,c> = BooleanPolynomialRing() sage: from sage.sat.converters.polybori import CNFEncoder sage: from sage.sat.solvers.dimacs import DIMACS sage: fn = tmp_filename() sage: solver = DIMACS(filename=fn) sage: e = CNFEncoder(solver, B, max_vars_sparse=2) sage: _ = e([a*b + a + 1, a*b+ a + c]) sage: e.to_polynomial( (1,-2,3) ) a*b*c + a*b + b*c + b """ def product(l): # order of these multiplications for performance res = l[0] for p in l[1:]: res = res*p return res phi = self.phi product = self.ring(1) for v in c: if phi[abs(v)] is None: raise ValueError("Clause containst an XOR glueing variable.") product *= phi[abs(v)] + int(v>0) return product