r""" Maps between finite sets This module implements parents modeling the set of all maps between two finite sets. At the user level, any such parent should be constructed using the factory class :class:`FiniteSetMaps` which properly selects which of its subclasses to use. AUTHORS: - Florent Hivert """ #***************************************************************************** # Copyright (C) 2010 Florent Hivert <Florent.Hivert@univ-rouen.fr>, # # Distributed under the terms of the GNU General Public License (GPL) # http://www.gnu.org/licenses/ #***************************************************************************** from sage.structure.parent import Parent from sage.rings.integer import Integer from sage.structure.unique_representation import UniqueRepresentation from sage.categories.sets_cat import Sets, EmptySetError from sage.categories.finite_monoids import FiniteMonoids from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets from sage.sets.finite_enumerated_set import FiniteEnumeratedSet from sage.combinat.cartesian_product import CartesianProduct from sage.sets.integer_range import IntegerRange from sage.sets.finite_set_map_cy import ( FiniteSetMap_MN, FiniteSetMap_Set, FiniteSetEndoMap_N, FiniteSetEndoMap_Set ) from sage.misc.cachefunc import cached_method # TODO: finite set maps should be morphisms in the category of finite sets class FiniteSetMaps(UniqueRepresentation, Parent): """ Maps between finite sets Constructs the set of all maps between two sets. The sets can be given using any of the three following ways: 1. an object in the category ``Sets()``. 2. a finite iterable. In this case, an object of the class :class:`~sage.sets.finite_enumerated_set.FiniteEnumeratedSet` is constructed from the iterable. 3. an integer ``n`` designing the set `\{1, 2, \dots, n\}`. In this case an object of the class :class:`~sage.sets.integer_range.IntegerRange` is constructed. INPUT: - ``domain`` -- a set, finite iterable, or integer. - ``codomain`` -- a set, finite iterable, integer, or ``None`` (default). In this last case, the maps are endo-maps of the domain. - ``action`` -- ``"left"`` (default) or ``"right"``. The side where the maps act on the domain. This is used in particular to define the meaning of the product (composition) of two maps. - ``category`` -- the category in which the sets of maps is constructed. By default, this is ``FiniteMonoids()`` if the domain and codomain coincide, and ``FiniteEnumeratedSets()`` otherwise. OUTPUT: an instance of a subclass of :class:`FiniteSetMaps` modeling the set of all maps between ``domain`` and ``codomain``. EXAMPLES: We construct the set ``M`` of all maps from `\{a,b\}` to `\{3,4,5\}`:: sage: M = FiniteSetMaps(["a", "b"], [3, 4, 5]); M Maps from {'a', 'b'} to {3, 4, 5} sage: M.cardinality() 9 sage: M.domain() {'a', 'b'} sage: M.codomain() {3, 4, 5} sage: for f in M: print f map: a -> 3, b -> 3 map: a -> 3, b -> 4 map: a -> 3, b -> 5 map: a -> 4, b -> 3 map: a -> 4, b -> 4 map: a -> 4, b -> 5 map: a -> 5, b -> 3 map: a -> 5, b -> 4 map: a -> 5, b -> 5 Elements can be constructed from functions and dictionaries:: sage: M(lambda c: ord(c)-94) map: a -> 3, b -> 4 sage: M.from_dict({'a':3, 'b':5}) map: a -> 3, b -> 5 If the domain is equal to the codomain, then maps can be composed:: sage: M = FiniteSetMaps([1, 2, 3]) sage: f = M.from_dict({1:2, 2:1, 3:3}); f map: 1 -> 2, 2 -> 1, 3 -> 3 sage: g = M.from_dict({1:2, 2:3, 3:1}); g map: 1 -> 2, 2 -> 3, 3 -> 1 sage: f * g map: 1 -> 1, 2 -> 3, 3 -> 2 This makes `M` into a monoid:: sage: M.category() Category of finite monoids sage: M.one() map: 1 -> 1, 2 -> 2, 3 -> 3 By default, composition is from right to left, which corresponds to an action on the left. If one specifies ``action`` to right, then the composition is from left to right:: sage: M = FiniteSetMaps([1, 2, 3], action = 'right') sage: f = M.from_dict({1:2, 2:1, 3:3}) sage: g = M.from_dict({1:2, 2:3, 3:1}) sage: f * g map: 1 -> 3, 2 -> 2, 3 -> 1 If the domains and codomains are both of the form `\{0,\dots\}`, then one can use the shortcut:: sage: M = FiniteSetMaps(2,3); M Maps from {0, 1} to {0, 1, 2} sage: M.cardinality() 9 For a compact notation, the elements are then printed as lists `[f(i), i=0,\dots]`:: sage: list(M) [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]] TESTS:: sage: TestSuite(FiniteSetMaps(0)).run() sage: TestSuite(FiniteSetMaps(0, 2)).run() sage: TestSuite(FiniteSetMaps(2, 0)).run() sage: TestSuite(FiniteSetMaps([], [])).run() sage: TestSuite(FiniteSetMaps([1, 2], [])).run() sage: TestSuite(FiniteSetMaps([], [1, 2])).run() """ @staticmethod def __classcall_private__(cls, domain, codomain = None, action = "left", category = None): """ TESTS:: sage: FiniteSetMaps(3) Maps from {0, 1, 2} to itself sage: FiniteSetMaps(4, 2) Maps from {0, 1, 2, 3} to {0, 1} sage: FiniteSetMaps(4, ["a","b","c"]) Maps from {0, 1, 2, 3} to {'a', 'b', 'c'} sage: FiniteSetMaps([1,2], ["a","b","c"]) Maps from {1, 2} to {'a', 'b', 'c'} sage: FiniteSetMaps([1,2,4], 3) Maps from {1, 2, 4} to {0, 1, 2} """ if codomain is None: if isinstance(domain, (int, Integer)): return FiniteSetEndoMaps_N(domain, action, category) else: if domain not in Sets(): domain = FiniteEnumeratedSet(domain) return FiniteSetEndoMaps_Set(domain, action, category) if isinstance(domain, (int, Integer)): if isinstance(codomain, (int, Integer)): return FiniteSetMaps_MN(domain, codomain, category) else: domain = IntegerRange(domain) if isinstance(codomain, (int, Integer)): codomain = IntegerRange(codomain) if domain not in Sets(): domain = FiniteEnumeratedSet(domain) if codomain not in Sets(): codomain = FiniteEnumeratedSet(codomain) return FiniteSetMaps_Set(domain, codomain, category) def cardinality(self): """ The cardinality of ``self`` EXAMPLES:: sage: FiniteSetMaps(4, 3).cardinality() 81 """ return self.codomain().cardinality()**self.domain().cardinality() class FiniteSetMaps_MN(FiniteSetMaps): """ The set of all maps from `\{1, 2, \dots, m\}` to `\{1, 2, \dots, n\}`. Users should use the factory class :class:`FiniteSetMaps` to create instances of this class. INPUT: - ``m``, ``n`` -- integers - ``category`` -- the category in which the sets of maps is constructed. It must be a sub-category of ``FiniteEnumeratedSets()`` which is the default value. """ def __init__(self, m, n, category=None): """ TESTS:: sage: M = FiniteSetMaps(2,3) sage: M.category() Category of finite enumerated sets sage: M.__class__ <class 'sage.sets.finite_set_maps.FiniteSetMaps_MN_with_category'> sage: TestSuite(M).run() """ Parent.__init__(self, category=FiniteEnumeratedSets().or_subcategory(category)) self._m = Integer(m) self._n = Integer(n) def domain(self): """ The domain of ``self`` EXAMPLES:: sage: FiniteSetMaps(3,2).domain() {0, 1, 2} """ return IntegerRange(self._m) def codomain(self): """ The codomain of ``self`` EXAMPLES:: sage: FiniteSetMaps(3,2).codomain() {0, 1} """ return IntegerRange(self._n) def _repr_(self): """ TESTS:: sage: FiniteSetMaps(2,3) Maps from {0, 1} to {0, 1, 2} """ return "Maps from %s to %s"%(self.domain(), self.codomain()) def __contains__(self, x): """ EXAMPLES:: sage: M = FiniteSetMaps(3,2) sage: [0,1,1] in M True sage: [1,2,4] in M False """ if isinstance(x, self.element_class): return x.parent() is self and len(x) == self._m else: x = list(x) if len(x) != self._m: return False for i in x: if not (0 <= i < self._n): return False return True def an_element(self): """ Returns a map in ``self`` EXAMPLES:: sage: M = FiniteSetMaps(4, 2) sage: M.an_element() [0, 0, 0, 0] sage: M = FiniteSetMaps(0, 0) sage: M.an_element() [] An exception :class:`~sage.categories.sets_cat.EmptySetError` is raised if this set is empty, that is if the codomain is empty and the domain is not. sage: M = FiniteSetMaps(4, 0) sage: M.cardinality() 0 sage: M.an_element() Traceback (most recent call last): ... EmptySetError """ if self._m > 0 and self._n == 0: raise EmptySetError return self._from_list_([0]*self._m) def __iter__(self): """ EXAMPLES:: sage: M = FiniteSetMaps(2,2) sage: M.list() [[0, 0], [0, 1], [1, 0], [1, 1]] TESTS:: sage: FiniteSetMaps(0,0).list() [[]] sage: FiniteSetMaps(0,1).list() [[]] sage: FiniteSetMaps(0,10).list() [[]] sage: FiniteSetMaps(1,0).list() [] sage: FiniteSetMaps(1,1).list() [[0]] """ for v in CartesianProduct(*([range(self._n)]*self._m)): yield self._from_list_(v) def _from_list_(self, v): """ EXAMPLES:: sage: M = FiniteSetMaps(4,3) sage: M._from_list_([2,1,1,0]) [2, 1, 1, 0] """ return self.element_class(self, v, check=False) def _element_constructor_(self, *args, **keywords): """ EXAMPLES:: sage: M = FiniteSetMaps(4,3) sage: M([2,1,1,0]) [2, 1, 1, 0] """ return self.element_class(self, *args, **keywords) Element = FiniteSetMap_MN class FiniteSetMaps_Set(FiniteSetMaps_MN): """ The sets of all maps between two sets Users should use the factory class :class:`FiniteSetMaps` to create instances of this class. INPUT: - ``domain`` -- an object in the category ``FiniteSets()``. - ``codomain`` -- an object in the category ``FiniteSets()``. - ``category`` -- the category in which the sets of maps is constructed. It must be a sub-category of ``FiniteEnumeratedSets()`` which is the default value. """ def __init__(self, domain, codomain, category=None): """ EXAMPLES:: sage: M = FiniteSetMaps(["a", "b"], [3, 4, 5]) sage: M Maps from {'a', 'b'} to {3, 4, 5} sage: M.cardinality() 9 sage: for f in M: print f map: a -> 3, b -> 3 map: a -> 3, b -> 4 map: a -> 3, b -> 5 map: a -> 4, b -> 3 map: a -> 4, b -> 4 map: a -> 4, b -> 5 map: a -> 5, b -> 3 map: a -> 5, b -> 4 map: a -> 5, b -> 5 TESTS:: sage: M.__class__ <class 'sage.sets.finite_set_maps.FiniteSetMaps_Set_with_category'> sage: M.category() Category of finite enumerated sets sage: TestSuite(M).run() """ FiniteSetMaps_MN.__init__(self, domain.cardinality(), codomain.cardinality(), category=category) self._domain = domain self._codomain = codomain import sage.combinat.ranker as ranker ldomain = domain.list() lcodomain = codomain.list() self._unrank_domain = ranker.unrank_from_list(ldomain) self._rank_domain = ranker.rank_from_list(ldomain) self._unrank_codomain = ranker.unrank_from_list(lcodomain) self._rank_codomain = ranker.rank_from_list(lcodomain) def domain(self): """ The domain of ``self`` EXAMPLES:: sage: FiniteSetMaps(["a", "b"], [3, 4, 5]).domain() {'a', 'b'} """ return self._domain def codomain(self): """ The codomain of ``self`` EXAMPLES:: sage: FiniteSetMaps(["a", "b"], [3, 4, 5]).codomain() {3, 4, 5} """ return self._codomain # TODO: consistency from_dict / from_list def _from_list_(self, v): """ Create a function from a list The list gives in the order of the element of the domain the rank (index) of its image in the codomain. EXAMPLES:: sage: M = FiniteSetMaps(["a", "b"], [3, 4, 5]) sage: M._from_list_([2,1]) map: a -> 5, b -> 4 """ return self.element_class.from_list(self, v) def from_dict(self, d): """ Create a map from a dictionary EXAMPLES:: sage: M = FiniteSetMaps(["a", "b"], [3, 4, 5]) sage: M.from_dict({"a": 4, "b": 3}) map: a -> 4, b -> 3 """ return self.element_class.from_dict(self, d) Element = FiniteSetMap_Set class FiniteSetEndoMaps_N(FiniteSetMaps_MN): """ The sets of all maps from `\{1, 2, \dots, n\}` to itself Users should use the factory class :class:`FiniteSetMaps` to create instances of this class. INPUT: - ``n`` -- an integer. - ``category`` -- the category in which the sets of maps is constructed. It must be a sub-category of ``FiniteMonoids()`` which is the default value. """ def __init__(self, n, action, category=None): """ EXAMPLES:: sage: M = FiniteSetMaps(3) sage: M.category() Category of finite monoids sage: M.__class__ <class 'sage.sets.finite_set_maps.FiniteSetEndoMaps_N_with_category'> sage: TestSuite(M).run() """ Parent.__init__(self, category=FiniteMonoids().or_subcategory(category)) self._m = n self._n = n self._action = action @cached_method def one(self): """ EXAMPLES:: sage: M = FiniteSetMaps(4) sage: M.one() [0, 1, 2, 3] """ return self._from_list_(range(self._n)) def an_element(self): """ Returns a map in ``self`` EXAMPLES:: sage: M = FiniteSetMaps(4) sage: M.an_element() [3, 2, 1, 0] """ return self._from_list_(range(self._n-1, -1, -1)) def _repr_(self): """ TESTS:: sage: FiniteSetMaps(2) Maps from {0, 1} to itself """ return "Maps from %s to itself"%(self.domain()) Element = FiniteSetEndoMap_N class FiniteSetEndoMaps_Set(FiniteSetMaps_Set, FiniteSetEndoMaps_N): """ The sets of all maps from a set to itself Users should use the factory class :class:`FiniteSetMaps` to create instances of this class. INPUT: - ``domain`` -- an object in the category ``FiniteSets()``. - ``category`` -- the category in which the sets of maps is constructed. It must be a sub-category of ``FiniteMonoids()`` which is the default value. """ def __init__(self, domain, action, category=None): """ TESTS:: sage: M = FiniteSetMaps(["a", "b", "c"]) sage: M.category() Category of finite monoids sage: M.__class__ <class 'sage.sets.finite_set_maps.FiniteSetEndoMaps_Set_with_category'> sage: TestSuite(M).run() """ FiniteSetMaps_MN.__init__(self, domain.cardinality(), domain.cardinality(), category=FiniteMonoids().or_subcategory(category)) self._domain = domain self._codomain = domain import sage.combinat.ranker as ranker ldomain = domain.list() self._unrank_domain = ranker.unrank_from_list(ldomain) self._rank_domain = ranker.rank_from_list(ldomain) self._unrank_codomain = self._unrank_domain self._rank_codomain = self._rank_domain self._action = action Element = FiniteSetEndoMap_Set