# This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.1
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.
 
from sys import version_info
if version_info >= (3,0,0):
    new_instancemethod = lambda func, inst, cls: _simuPOP_baop.SWIG_PyInstanceMethod_New(func)
else:
    from new import instancemethod as new_instancemethod
if version_info >= (2,6,0):
    def swig_import_helper():
        from os.path import dirname
        import imp
        fp = None
        try:
            fp, pathname, description = imp.find_module('_simuPOP_baop', [dirname(__file__)])
        except ImportError:
            import _simuPOP_baop
            return _simuPOP_baop
        if fp is not None:
            try:
                _mod = imp.load_module('_simuPOP_baop', fp, pathname, description)
            finally:
                fp.close()
            return _mod
    _simuPOP_baop = swig_import_helper()
    del swig_import_helper
else:
    import _simuPOP_baop
del version_info
try:
    _swig_property = property
except NameError:
    pass # Python < 2.2 doesn't have 'property'.
def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
    if (name == "thisown"): return self.this.own(value)
    if (name == "this"):
        if type(value).__name__ == 'SwigPyObject':
            self.__dict__[name] = value
            return
    method = class_type.__swig_setmethods__.get(name,None)
    if method: return method(self,value)
    if (not static) or hasattr(self,name):
        self.__dict__[name] = value
    else:
        raise AttributeError("You cannot add attributes to %s" % self)
 
def _swig_setattr(self,class_type,name,value):
    return _swig_setattr_nondynamic(self,class_type,name,value,0)
 
def _swig_getattr(self,class_type,name):
    if (name == "thisown"): return self.this.own()
    method = class_type.__swig_getmethods__.get(name,None)
    if method: return method(self)
    raise AttributeError(name)
 
def _swig_repr(self):
    try: strthis = "proxy of " + self.this.__repr__()
    except: strthis = ""
    return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)
 
try:
    _object = object
    _newclass = 1
except AttributeError:
    class _object : pass
    _newclass = 0
 
 
def _swig_setattr_nondynamic_method(set):
    def set_attr(self,name,value):
        if (name == "thisown"): return self.this.own(value)
        if hasattr(self,name) or (name == "this"):
            set(self,name,value)
        else:
            raise AttributeError("You cannot add attributes to %s" % self)
    return set_attr
 
 
#redefine __repr__ to make it shorter.
def _swig_repr(self):
    if hasattr(self, 'describe'):
        return self.describe()
    else:
        return "<%s.%s>" % (self.__class__.__module__.split('.')[-1].split('_')[0], self.__class__.__name__)
 
class SwigPyIterator(object):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _simuPOP_baop.delete_SwigPyIterator
    def __iter__(self): return self
SwigPyIterator.value = new_instancemethod(_simuPOP_baop.SwigPyIterator_value,None,SwigPyIterator)
SwigPyIterator.incr = new_instancemethod(_simuPOP_baop.SwigPyIterator_incr,None,SwigPyIterator)
SwigPyIterator.decr = new_instancemethod(_simuPOP_baop.SwigPyIterator_decr,None,SwigPyIterator)
SwigPyIterator.distance = new_instancemethod(_simuPOP_baop.SwigPyIterator_distance,None,SwigPyIterator)
SwigPyIterator.equal = new_instancemethod(_simuPOP_baop.SwigPyIterator_equal,None,SwigPyIterator)
SwigPyIterator.copy = new_instancemethod(_simuPOP_baop.SwigPyIterator_copy,None,SwigPyIterator)
SwigPyIterator.next = new_instancemethod(_simuPOP_baop.SwigPyIterator_next,None,SwigPyIterator)
SwigPyIterator.__next__ = new_instancemethod(_simuPOP_baop.SwigPyIterator___next__,None,SwigPyIterator)
SwigPyIterator.previous = new_instancemethod(_simuPOP_baop.SwigPyIterator_previous,None,SwigPyIterator)
SwigPyIterator.advance = new_instancemethod(_simuPOP_baop.SwigPyIterator_advance,None,SwigPyIterator)
SwigPyIterator.__eq__ = new_instancemethod(_simuPOP_baop.SwigPyIterator___eq__,None,SwigPyIterator)
SwigPyIterator.__ne__ = new_instancemethod(_simuPOP_baop.SwigPyIterator___ne__,None,SwigPyIterator)
SwigPyIterator.__iadd__ = new_instancemethod(_simuPOP_baop.SwigPyIterator___iadd__,None,SwigPyIterator)
SwigPyIterator.__isub__ = new_instancemethod(_simuPOP_baop.SwigPyIterator___isub__,None,SwigPyIterator)
SwigPyIterator.__add__ = new_instancemethod(_simuPOP_baop.SwigPyIterator___add__,None,SwigPyIterator)
SwigPyIterator.__sub__ = new_instancemethod(_simuPOP_baop.SwigPyIterator___sub__,None,SwigPyIterator)
SwigPyIterator_swigregister = _simuPOP_baop.SwigPyIterator_swigregister
SwigPyIterator_swigregister(SwigPyIterator)
 
HAVE_FLOOR = _simuPOP_baop.HAVE_FLOOR
HAVE_POW = _simuPOP_baop.HAVE_POW
HAVE_SQRT = _simuPOP_baop.HAVE_SQRT
TR1_SUPPORT = _simuPOP_baop.TR1_SUPPORT
MALE = _simuPOP_baop.MALE
FEMALE = _simuPOP_baop.FEMALE
CUSTOMIZED = _simuPOP_baop.CUSTOMIZED
AUTOSOME = _simuPOP_baop.AUTOSOME
CHROMOSOME_X = _simuPOP_baop.CHROMOSOME_X
CHROMOSOME_Y = _simuPOP_baop.CHROMOSOME_Y
CONSTANT = _simuPOP_baop.CONSTANT
BINOMIAL_DISTRIBUTION = _simuPOP_baop.BINOMIAL_DISTRIBUTION
EXPONENTIAL_DISTRIBUTION = _simuPOP_baop.EXPONENTIAL_DISTRIBUTION
GEOMETRIC_DISTRIBUTION = _simuPOP_baop.GEOMETRIC_DISTRIBUTION
POISSON_DISTRIBUTION = _simuPOP_baop.POISSON_DISTRIBUTION
UNIFORM_DISTRIBUTION = _simuPOP_baop.UNIFORM_DISTRIBUTION
NORMAL_DISTRIBUTION = _simuPOP_baop.NORMAL_DISTRIBUTION
GAMMA_DISTRIBUTION = _simuPOP_baop.GAMMA_DISTRIBUTION
NO_SEX = _simuPOP_baop.NO_SEX
RANDOM_SEX = _simuPOP_baop.RANDOM_SEX
PROB_OF_MALES = _simuPOP_baop.PROB_OF_MALES
NUM_OF_MALES = _simuPOP_baop.NUM_OF_MALES
NUM_OF_FEMALES = _simuPOP_baop.NUM_OF_FEMALES
SEQUENCE_OF_SEX = _simuPOP_baop.SEQUENCE_OF_SEX
GLOBAL_SEQUENCE_OF_SEX = _simuPOP_baop.GLOBAL_SEQUENCE_OF_SEX
NO_CONVERSION = _simuPOP_baop.NO_CONVERSION
NUM_MARKERS = _simuPOP_baop.NUM_MARKERS
TRACT_LENGTH = _simuPOP_baop.TRACT_LENGTH
OFFSPRING = _simuPOP_baop.OFFSPRING
COMMON_OFFSPRING = _simuPOP_baop.COMMON_OFFSPRING
SPOUSE = _simuPOP_baop.SPOUSE
OUTBRED_SPOUSE = _simuPOP_baop.OUTBRED_SPOUSE
SIBLING = _simuPOP_baop.SIBLING
FULLSIBLING = _simuPOP_baop.FULLSIBLING
ANY_SEX = _simuPOP_baop.ANY_SEX
MALE_ONLY = _simuPOP_baop.MALE_ONLY
FEMALE_ONLY = _simuPOP_baop.FEMALE_ONLY
SAME_SEX = _simuPOP_baop.SAME_SEX
OPPOSITE_SEX = _simuPOP_baop.OPPOSITE_SEX
UNAFFECTED = _simuPOP_baop.UNAFFECTED
AFFECTED = _simuPOP_baop.AFFECTED
ANY_AFFECTION_STATUS = _simuPOP_baop.ANY_AFFECTION_STATUS
MULTIPLICATIVE = _simuPOP_baop.MULTIPLICATIVE
ADDITIVE = _simuPOP_baop.ADDITIVE
HETEROGENEITY = _simuPOP_baop.HETEROGENEITY
EXPONENTIAL = _simuPOP_baop.EXPONENTIAL
BY_IND_INFO = _simuPOP_baop.BY_IND_INFO
BY_PROBABILITY = _simuPOP_baop.BY_PROBABILITY
BY_PROPORTION = _simuPOP_baop.BY_PROPORTION
BY_COUNTS = _simuPOP_baop.BY_COUNTS
PATERNAL = _simuPOP_baop.PATERNAL
MATERNAL = _simuPOP_baop.MATERNAL
MEAN = _simuPOP_baop.MEAN
MAXIMUM = _simuPOP_baop.MAXIMUM
MINIMUM = _simuPOP_baop.MINIMUM
SUMMATION = _simuPOP_baop.SUMMATION
MULTIPLICATION = _simuPOP_baop.MULTIPLICATION
DBG_WARNING = _simuPOP_baop.DBG_WARNING
class Exception(object):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        _simuPOP_baop.Exception_swiginit(self,_simuPOP_baop.new_Exception(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_Exception
Exception.message = new_instancemethod(_simuPOP_baop.Exception_message,None,Exception)
Exception_swigregister = _simuPOP_baop.Exception_swigregister
Exception_swigregister(Exception)
cvar = _simuPOP_baop.cvar
ModuleMaxAllele = cvar.ModuleMaxAllele
MaxRandomNumber = cvar.MaxRandomNumber
MaxTraitIndex = cvar.MaxTraitIndex
InvalidSubPopID = cvar.InvalidSubPopID
MaxSubPopID = cvar.MaxSubPopID
MaxIndexSize = cvar.MaxIndexSize
 
class StopIteration(Exception):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        _simuPOP_baop.StopIteration_swiginit(self,_simuPOP_baop.new_StopIteration(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_StopIteration
StopIteration_swigregister = _simuPOP_baop.StopIteration_swigregister
StopIteration_swigregister(StopIteration)
 
class IndexError(Exception):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        _simuPOP_baop.IndexError_swiginit(self,_simuPOP_baop.new_IndexError(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_IndexError
IndexError_swigregister = _simuPOP_baop.IndexError_swigregister
IndexError_swigregister(IndexError)
 
class ValueError(Exception):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        _simuPOP_baop.ValueError_swiginit(self,_simuPOP_baop.new_ValueError(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_ValueError
ValueError_swigregister = _simuPOP_baop.ValueError_swigregister
ValueError_swigregister(ValueError)
 
class SystemError(Exception):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        _simuPOP_baop.SystemError_swiginit(self,_simuPOP_baop.new_SystemError(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_SystemError
SystemError_swigregister = _simuPOP_baop.SystemError_swigregister
SystemError_swigregister(SystemError)
 
class RuntimeError(Exception):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        _simuPOP_baop.RuntimeError_swiginit(self,_simuPOP_baop.new_RuntimeError(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_RuntimeError
RuntimeError_swigregister = _simuPOP_baop.RuntimeError_swigregister
RuntimeError_swigregister(RuntimeError)
 
class StopEvolution(Exception):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        _simuPOP_baop.StopEvolution_swiginit(self,_simuPOP_baop.new_StopEvolution(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_StopEvolution
StopEvolution_swigregister = _simuPOP_baop.StopEvolution_swigregister
StopEvolution_swigregister(StopEvolution)
 
UnnamedSubPop = _simuPOP_baop.UnnamedSubPop
cmp_epsilon = _simuPOP_baop.cmp_epsilon
 
def turnOnDebug(*args, **kwargs):
  """
    Usage:
 
        turnOnDebug(code="")
 
    Details:
 
        Set debug code code. More than one code could be specified using a
        comma separated string. Name of available codes are available from
        moduleInfo()['debug'].keys().
 
 
    """
  return _simuPOP_baop.turnOnDebug(*args, **kwargs)
 
def turnOffDebug(code = "DBG_ALL"):
  """
    Usage:
 
        turnOffDebug(code="DBG_ALL")
 
    Details:
 
        Turn off debug code code. More than one code could be specified
        using a comma separated string. Default to turn off all debug
        codes.
 
 
    """
  return _simuPOP_baop.turnOffDebug(code)
 
def simuPOP_kbhit():
  return _simuPOP_baop.simuPOP_kbhit()
simuPOP_kbhit = _simuPOP_baop.simuPOP_kbhit
 
def simuPOP_getch():
  return _simuPOP_baop.simuPOP_getch()
simuPOP_getch = _simuPOP_baop.simuPOP_getch
 
def pow3(*args, **kwargs):
  return _simuPOP_baop.pow3(*args, **kwargs)
pow3 = _simuPOP_baop.pow3
class intList(object):
    """
    Details:
 
        A class to specify replicate list. The reason why I cannot simple
        use vectori() is that users have got used to use a single number
        to specify a single replicate.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, obj = None): 
        """
        Usage:
 
            intList(obj=None)
 
 
        """
        _simuPOP_baop.intList_swiginit(self,_simuPOP_baop.new_intList(obj))
    __swig_destroy__ = _simuPOP_baop.delete_intList
intList_swigregister = _simuPOP_baop.intList_swigregister
intList_swigregister(intList)
 
class uintList(object):
    """
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            uintList(obj=Py_True)
 
 
        """
        _simuPOP_baop.uintList_swiginit(self,_simuPOP_baop.new_uintList(*args, **kwargs))
    def unspecified(self):
        """
        Usage:
 
            x.unspecified()
 
 
        """
        return _simuPOP_baop.uintList_unspecified(self)
 
    __swig_destroy__ = _simuPOP_baop.delete_uintList
uintList.unspecified = new_instancemethod(_simuPOP_baop.uintList_unspecified,None,uintList)
uintList_swigregister = _simuPOP_baop.uintList_swigregister
uintList_swigregister(uintList)
 
class lociList(object):
    """
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            lociList(obj=Py_True)
 
 
        """
        _simuPOP_baop.lociList_swiginit(self,_simuPOP_baop.new_lociList(*args, **kwargs))
    def empty(self):
        """
        Usage:
 
            x.empty()
 
 
        """
        return _simuPOP_baop.lociList_empty(self)
 
    def dynamic(self):
        """
        Usage:
 
            x.dynamic()
 
 
        """
        return _simuPOP_baop.lociList_dynamic(self)
 
    def locate(self, *args, **kwargs):
        """
        Usage:
 
            x.locate(trait)
 
 
        """
        return _simuPOP_baop.lociList_locate(self, *args, **kwargs)
 
    __swig_destroy__ = _simuPOP_baop.delete_lociList
lociList.empty = new_instancemethod(_simuPOP_baop.lociList_empty,None,lociList)
lociList.dynamic = new_instancemethod(_simuPOP_baop.lociList_dynamic,None,lociList)
lociList.locate = new_instancemethod(_simuPOP_baop.lociList_locate,None,lociList)
lociList_swigregister = _simuPOP_baop.lociList_swigregister
lociList_swigregister(lociList)
 
class floatList(object):
    """
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        Usage:
 
            floatList(obj=None)
 
 
        """
        _simuPOP_baop.floatList_swiginit(self,_simuPOP_baop.new_floatList(*args))
    __swig_destroy__ = _simuPOP_baop.delete_floatList
floatList_swigregister = _simuPOP_baop.floatList_swigregister
floatList_swigregister(floatList)
 
class stringList(object):
    """
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        Usage:
 
            stringList(str=None)
 
 
        """
        _simuPOP_baop.stringList_swiginit(self,_simuPOP_baop.new_stringList(*args))
    __swig_destroy__ = _simuPOP_baop.delete_stringList
stringList.push_back = new_instancemethod(_simuPOP_baop.stringList_push_back,None,stringList)
stringList_swigregister = _simuPOP_baop.stringList_swigregister
stringList_swigregister(stringList)
 
class intMatrix(object):
    """
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, obj = None): 
        """
        Usage:
 
            intMatrix(obj=None)
 
 
        """
        _simuPOP_baop.intMatrix_swiginit(self,_simuPOP_baop.new_intMatrix(obj))
    __swig_destroy__ = _simuPOP_baop.delete_intMatrix
intMatrix_swigregister = _simuPOP_baop.intMatrix_swigregister
intMatrix_swigregister(intMatrix)
 
class floatMatrix(object):
    """
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, obj = None): 
        """
        Usage:
 
            floatMatrix(obj=None)
 
 
        """
        _simuPOP_baop.floatMatrix_swiginit(self,_simuPOP_baop.new_floatMatrix(obj))
    __swig_destroy__ = _simuPOP_baop.delete_floatMatrix
floatMatrix_swigregister = _simuPOP_baop.floatMatrix_swigregister
floatMatrix_swigregister(floatMatrix)
 
class stringMatrix(object):
    """
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, str = None): 
        """
        Usage:
 
            stringMatrix(str=None)
 
 
        """
        _simuPOP_baop.stringMatrix_swiginit(self,_simuPOP_baop.new_stringMatrix(str))
    __swig_destroy__ = _simuPOP_baop.delete_stringMatrix
stringMatrix_swigregister = _simuPOP_baop.stringMatrix_swigregister
stringMatrix_swigregister(stringMatrix)
 
class uintString(object):
    """
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        Usage:
 
            uintString(value)
 
 
        """
        _simuPOP_baop.uintString_swiginit(self,_simuPOP_baop.new_uintString(*args))
    __swig_destroy__ = _simuPOP_baop.delete_uintString
uintString_swigregister = _simuPOP_baop.uintString_swigregister
uintString_swigregister(uintString)
 
class stringFunc(object):
    """
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        Usage:
 
            stringFunc(value)
 
 
        """
        _simuPOP_baop.stringFunc_swiginit(self,_simuPOP_baop.new_stringFunc(*args))
    __swig_destroy__ = _simuPOP_baop.delete_stringFunc
stringFunc_swigregister = _simuPOP_baop.stringFunc_swigregister
stringFunc_swigregister(stringFunc)
 
class uintListFunc(uintList):
    """
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        Usage:
 
            uintListFunc(values=[])
 
 
        """
        _simuPOP_baop.uintListFunc_swiginit(self,_simuPOP_baop.new_uintListFunc(*args))
    __swig_destroy__ = _simuPOP_baop.delete_uintListFunc
uintListFunc_swigregister = _simuPOP_baop.uintListFunc_swigregister
uintListFunc_swigregister(uintListFunc)
 
class floatListFunc(floatList):
    """
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        Usage:
 
            floatListFunc(func)
 
 
        """
        _simuPOP_baop.floatListFunc_swiginit(self,_simuPOP_baop.new_floatListFunc(*args))
    __swig_destroy__ = _simuPOP_baop.delete_floatListFunc
floatListFunc_swigregister = _simuPOP_baop.floatListFunc_swigregister
floatListFunc_swigregister(floatListFunc)
 
 
def PyObj_As_Bool(*args, **kwargs):
  return _simuPOP_baop.PyObj_As_Bool(*args, **kwargs)
PyObj_As_Bool = _simuPOP_baop.PyObj_As_Bool
 
def PyObj_As_Int(*args, **kwargs):
  return _simuPOP_baop.PyObj_As_Int(*args, **kwargs)
PyObj_As_Int = _simuPOP_baop.PyObj_As_Int
 
def PyObj_As_Double(*args, **kwargs):
  return _simuPOP_baop.PyObj_As_Double(*args, **kwargs)
PyObj_As_Double = _simuPOP_baop.PyObj_As_Double
 
def PyObj_As_String(*args, **kwargs):
  return _simuPOP_baop.PyObj_As_String(*args, **kwargs)
PyObj_As_String = _simuPOP_baop.PyObj_As_String
 
def PyObj_As_Array(*args, **kwargs):
  return _simuPOP_baop.PyObj_As_Array(*args, **kwargs)
PyObj_As_Array = _simuPOP_baop.PyObj_As_Array
 
def PyObj_As_IntArray(*args, **kwargs):
  return _simuPOP_baop.PyObj_As_IntArray(*args, **kwargs)
PyObj_As_IntArray = _simuPOP_baop.PyObj_As_IntArray
 
def Allele_Vec_As_NumArray(*args, **kwargs):
  return _simuPOP_baop.Allele_Vec_As_NumArray(*args, **kwargs)
Allele_Vec_As_NumArray = _simuPOP_baop.Allele_Vec_As_NumArray
 
def PyObj_AsString(*args, **kwargs):
  return _simuPOP_baop.PyObj_AsString(*args, **kwargs)
PyObj_AsString = _simuPOP_baop.PyObj_AsString
 
def closeOutput(*args, **kwargs):
  """
    Usage:
 
        closeOutput(output="")
 
    Details:
 
        Output files specified by '>' are closed immediately after they
        are written. Those specified by '>>' and '>>>' are closed by a
        simulator after Simulator.evolve(). However, these files will be
        kept open if the operators are applied directly to a population
        using the operators' function form. In this case, function
        closeOutput can be used to close a specific file output, and close
        all unclosed files if output is unspecified. An exception will be
        raised if output does not exist or it has already been closed.
 
 
    """
  return _simuPOP_baop.closeOutput(*args, **kwargs)
class RNG_func(object):
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        _simuPOP_baop.RNG_func_swiginit(self,_simuPOP_baop.new_RNG_func(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_RNG_func
RNG_func.__call__ = new_instancemethod(_simuPOP_baop.RNG_func___call__,None,RNG_func)
RNG_func_swigregister = _simuPOP_baop.RNG_func_swigregister
RNG_func_swigregister(RNG_func)
 
class RNG(object):
    """
    Details:
 
        This random number generator class wraps around a number of random
        number generators from GNU Scientific Library. You can obtain and
        change the RNG used by the current simuPOP module through the
        getRNG() function, or create a separate random number generator
        and use it in your script.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, name = None, seed = 0): 
        """
        Usage:
 
            RNG(name=None, seed=0)
 
        Details:
 
            Create a RNG object using specified name and seed. If rng is not
            given, environmental variable GSL_RNG_TYPE will be used if it is
            available. Otherwise, generator mt19937 will be used. If seed is
            not given, /dev/urandom, /dev/random, or other system random
            number source will be used to guarantee that random seeds are used
            even if more than one simuPOP sessions are started simultaneously.
            Names of supported random number generators are available from
            moduleInfo()['availableRNGs'].
 
 
        """
        _simuPOP_baop.RNG_swiginit(self,_simuPOP_baop.new_RNG(name, seed))
    __swig_destroy__ = _simuPOP_baop.delete_RNG
    def set(self, name = None, seed = 0):
        """
        Usage:
 
            x.set(name=None, seed=0)
 
        Details:
 
            Replace the existing random number generator using RNGname with
            seed seed. If seed is 0, a random seed will be used. If name is
            empty, use the existing RNG but reset the seed.
 
 
        """
        return _simuPOP_baop.RNG_set(self, name, seed)
 
    def name(self):
        """
        Usage:
 
            x.name()
 
        Details:
 
            Return the name of the current random number generator.
 
 
        """
        return _simuPOP_baop.RNG_name(self)
 
    def seed(self):
        """
        Usage:
 
            x.seed()
 
        Details:
 
            Return the seed used to initialize the RNG. This can be used to
            repeat a previous session.
 
 
        """
        return _simuPOP_baop.RNG_seed(self)
 
    def randUniform(self):
        """
        Usage:
 
            x.randUniform()
 
        Details:
 
            Generate a random number following a rng_uniform [0, 1)
            distribution.
 
 
        """
        return _simuPOP_baop.RNG_randUniform(self)
 
    def randBit(self):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.RNG_randBit(self)
 
    def randInt(self, *args, **kwargs):
        """
        Usage:
 
            x.randInt(n)
 
        Details:
 
            return a random number in the range of [0, 1, 2, ... n-1]
 
 
        """
        return _simuPOP_baop.RNG_randInt(self, *args, **kwargs)
 
    def randNormal(self, *args, **kwargs):
        """
        Usage:
 
            x.randNormal(mu, sigma)
 
        Details:
 
            Generate a random number following a normal distribution with mean
            mu and standard deviation sigma.
 
 
        """
        return _simuPOP_baop.RNG_randNormal(self, *args, **kwargs)
 
    def randExponential(self, *args, **kwargs):
        """
        Usage:
 
            x.randExponential(mu)
 
        Details:
 
            Generate a random number following a exponential distribution with
            parameter mu.
 
 
        """
        return _simuPOP_baop.RNG_randExponential(self, *args, **kwargs)
 
    def randGamma(self, *args, **kwargs):
        """
        Usage:
 
            x.randGamma(a, b)
 
        Details:
 
            Generate a random number following a gamma distribution with a
            shape parameters a and scale parameter b.
 
 
        """
        return _simuPOP_baop.RNG_randGamma(self, *args, **kwargs)
 
    def randChisq(self, *args, **kwargs):
        """
        Usage:
 
            x.randChisq(nu)
 
        Details:
 
            Generate a random number following a Chi-squared distribution with
            nu degrees of freedom.
 
 
        """
        return _simuPOP_baop.RNG_randChisq(self, *args, **kwargs)
 
    def randGeometric(self, *args, **kwargs):
        """
        Usage:
 
            x.randGeometric(p)
 
        Details:
 
            Generate a random number following a geometric distribution with
            parameter p.
 
 
        """
        return _simuPOP_baop.RNG_randGeometric(self, *args, **kwargs)
 
    def randBinomial(self, *args, **kwargs):
        """
        Usage:
 
            x.randBinomial(n, p)
 
        Details:
 
            Generate a random number following a binomial distribution with
            parameters n and p.
 
 
        """
        return _simuPOP_baop.RNG_randBinomial(self, *args, **kwargs)
 
    def randPoisson(self, *args, **kwargs):
        """
        Usage:
 
            x.randPoisson(mu)
 
        Details:
 
            Generate a random number following a Poisson distribution with
            parameter mu.
 
 
        """
        return _simuPOP_baop.RNG_randPoisson(self, *args, **kwargs)
 
    def randTruncatedPoisson(self, *args, **kwargs):
        """
        Usage:
 
            x.randTruncatedPoisson(mu)
 
        Details:
 
            Generate a positive random number following a zero-truncated
            Poisson distribution with parameter mu.
 
 
        """
        return _simuPOP_baop.RNG_randTruncatedPoisson(self, *args, **kwargs)
 
    def randTruncatedBinomial(self, *args, **kwargs):
        """
        Usage:
 
            x.randTruncatedBinomial(n, p)
 
        Details:
 
            Generate a positive random number following a zero-truncated
            binomial distribution with parameters n and p.
 
 
        """
        return _simuPOP_baop.RNG_randTruncatedBinomial(self, *args, **kwargs)
 
    def randMultinomial(self, *args, **kwargs):
        """
        Usage:
 
            x.randMultinomial(N, p)
 
        Details:
 
            Generate a random number following a multinomial distribution with
            parameters N and p (a list of probabilities).
 
 
        """
        return _simuPOP_baop.RNG_randMultinomial(self, *args, **kwargs)
 
RNG.set = new_instancemethod(_simuPOP_baop.RNG_set,None,RNG)
RNG.name = new_instancemethod(_simuPOP_baop.RNG_name,None,RNG)
RNG.seed = new_instancemethod(_simuPOP_baop.RNG_seed,None,RNG)
RNG.randUniform = new_instancemethod(_simuPOP_baop.RNG_randUniform,None,RNG)
RNG.randBit = new_instancemethod(_simuPOP_baop.RNG_randBit,None,RNG)
RNG.randInt = new_instancemethod(_simuPOP_baop.RNG_randInt,None,RNG)
RNG.randNormal = new_instancemethod(_simuPOP_baop.RNG_randNormal,None,RNG)
RNG.randExponential = new_instancemethod(_simuPOP_baop.RNG_randExponential,None,RNG)
RNG.randGamma = new_instancemethod(_simuPOP_baop.RNG_randGamma,None,RNG)
RNG.randChisq = new_instancemethod(_simuPOP_baop.RNG_randChisq,None,RNG)
RNG.randGeometric = new_instancemethod(_simuPOP_baop.RNG_randGeometric,None,RNG)
RNG.randBinomial = new_instancemethod(_simuPOP_baop.RNG_randBinomial,None,RNG)
RNG.randPoisson = new_instancemethod(_simuPOP_baop.RNG_randPoisson,None,RNG)
RNG.randTruncatedPoisson = new_instancemethod(_simuPOP_baop.RNG_randTruncatedPoisson,None,RNG)
RNG.randTruncatedBinomial = new_instancemethod(_simuPOP_baop.RNG_randTruncatedBinomial,None,RNG)
RNG.randMultinomial = new_instancemethod(_simuPOP_baop.RNG_randMultinomial,None,RNG)
RNG_swigregister = _simuPOP_baop.RNG_swigregister
RNG_swigregister(RNG)
 
 
def getRNG():
  """
    Description:
 
        return the currently used random number generator
 
    Usage:
 
        getRNG()
 
 
    """
  return _simuPOP_baop.getRNG()
class WeightedSampler(object):
    """
    Details:
 
        A random number generator that returns 0, 1, ..., k-1 with
        probabilites that are proportional to their weights. For example,
        a weighted sampler with weights 4, 3, 2 and 1 will return numbers
        0, 1, 2 and 3 with probabilities 0.4, 0.3, 0.2 and 0.1,
        respectively. If an additional parameter N is specified, the
        weighted sampler will return exact proportions of numbers if N
        numbers are returned. The version without additional parameter is
        similar to the sample(prob, replace=FALSE) function of the R
        statistical package.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            WeightedSampler(weights=[], N=0)
 
        Details:
 
            Creates a weighted sampler that returns 0, 1, ... k-1 when a list
            of k weights are specified (weights). weights do not have to add
            up to 1. If a non-zero N is specified, exact proportions of
            numbers will be returned in N returned numbers.
 
 
        """
        _simuPOP_baop.WeightedSampler_swiginit(self,_simuPOP_baop.new_WeightedSampler(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_WeightedSampler
    def draw(self):
        """
        Usage:
 
            x.draw()
 
        Details:
 
            Returns a random number between 0 and k-1 with probabilities that
            are proportional to specified weights.
 
 
        """
        return _simuPOP_baop.WeightedSampler_draw(self)
 
    def drawSamples(self, n = 1):
        """
        Usage:
 
            x.drawSamples(n=1)
 
        Details:
 
            Returns a list of n random numbers
 
 
        """
        return _simuPOP_baop.WeightedSampler_drawSamples(self, n)
 
WeightedSampler.draw = new_instancemethod(_simuPOP_baop.WeightedSampler_draw,None,WeightedSampler)
WeightedSampler.drawSamples = new_instancemethod(_simuPOP_baop.WeightedSampler_drawSamples,None,WeightedSampler)
WeightedSampler_swigregister = _simuPOP_baop.WeightedSampler_swigregister
WeightedSampler_swigregister(WeightedSampler)
 
class Bernullitrials(object):
    """
    Details:
 
        this class encapsulate behavior of a sequence of Bernulli trial.
        the main idea is that when doing a sequence of Bernulli trials of
        the same probability, we can use much quicker algorithms instead
        of doing n Bernulli trials  For example, when N=10000, p=0.001.
        The usual way to do N Bin(p) trials is to do N randUnif(0,1)<p
        comparison.  using the new method, we can use geometric
        distrubution to find the next true event.  Also, for the cases of
        p=0.5, random bits are generated.  This class maintain a two
        dimensional table: a vector of probabilities cross expected number
        of trials  p1 p2 p3 p4 p5 trial 1 trial 2 ... trial N  We expect
        that N is big (usually populaiton size) and p_i are small  using
        fast bernulliTrial method for fix p, we can fill up this table
        very quickly column by column  This class will provide easy access
        to row (each trial) or column (called each prob) of this table.
        if this table is accessed row by row (each trial), a internal
        index is used.  if index exceeds N, trials will be generated all
        again. if trial will be called, e.g., N+2 times all the time, this
        treatment might not be very efficient.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            Bernullitrials(rng, prob, trials)
 
 
        """
        _simuPOP_baop.Bernullitrials_swiginit(self,_simuPOP_baop.new_Bernullitrials(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_Bernullitrials
    def probSize(self):
        """
        Usage:
 
            x.probSize()
 
 
        """
        return _simuPOP_baop.Bernullitrials_probSize(self)
 
    def doTrial(self):
        """
        Description:
 
            generate the trial table, reset m_cur
 
        Usage:
 
            x.doTrial()
 
 
        """
        return _simuPOP_baop.Bernullitrials_doTrial(self)
 
    def trial(self):
        """
        Description:
 
            if necessary, do trail again.
 
        Usage:
 
            x.trial()
 
 
        """
        return _simuPOP_baop.Bernullitrials_trial(self)
 
    def trialSucc(self, *args):
        """
        Usage:
 
            x.trialSucc(idx)
 
 
        """
        return _simuPOP_baop.Bernullitrials_trialSucc(self, *args)
 
    def probFirstSucc(self):
        """
        Usage:
 
            x.probFirstSucc()
 
 
        """
        return _simuPOP_baop.Bernullitrials_probFirstSucc(self)
 
    def probNextSucc(self, *args, **kwargs):
        """
        Usage:
 
            x.probNextSucc(pos)
 
 
        """
        return _simuPOP_baop.Bernullitrials_probNextSucc(self, *args, **kwargs)
 
    def trialFirstSucc(self, *args, **kwargs):
        """
        Usage:
 
            x.trialFirstSucc(idx)
 
 
        """
        return _simuPOP_baop.Bernullitrials_trialFirstSucc(self, *args, **kwargs)
 
    def trialNextSucc(self, *args, **kwargs):
        """
        Usage:
 
            x.trialNextSucc(idx, pos)
 
 
        """
        return _simuPOP_baop.Bernullitrials_trialNextSucc(self, *args, **kwargs)
 
    def setTrialSucc(self, *args, **kwargs):
        """
        Usage:
 
            x.setTrialSucc(idx, succ)
 
 
        """
        return _simuPOP_baop.Bernullitrials_setTrialSucc(self, *args, **kwargs)
 
    def trialSuccRate(self, *args, **kwargs):
        """
        Description:
 
            return the succ rate for one index, used for verification pruposes
 
        Usage:
 
            x.trialSuccRate(index)
 
 
        """
        return _simuPOP_baop.Bernullitrials_trialSuccRate(self, *args, **kwargs)
 
    def probSuccRate(self):
        """
        Description:
 
            return the succ rate for current trial, used for verification
            pruposes
 
        Usage:
 
            x.probSuccRate()
 
 
        """
        return _simuPOP_baop.Bernullitrials_probSuccRate(self)
 
    npos = _simuPOP_baop.Bernullitrials_npos
Bernullitrials.probSize = new_instancemethod(_simuPOP_baop.Bernullitrials_probSize,None,Bernullitrials)
Bernullitrials.doTrial = new_instancemethod(_simuPOP_baop.Bernullitrials_doTrial,None,Bernullitrials)
Bernullitrials.trial = new_instancemethod(_simuPOP_baop.Bernullitrials_trial,None,Bernullitrials)
Bernullitrials.trialSucc = new_instancemethod(_simuPOP_baop.Bernullitrials_trialSucc,None,Bernullitrials)
Bernullitrials.probFirstSucc = new_instancemethod(_simuPOP_baop.Bernullitrials_probFirstSucc,None,Bernullitrials)
Bernullitrials.probNextSucc = new_instancemethod(_simuPOP_baop.Bernullitrials_probNextSucc,None,Bernullitrials)
Bernullitrials.trialFirstSucc = new_instancemethod(_simuPOP_baop.Bernullitrials_trialFirstSucc,None,Bernullitrials)
Bernullitrials.trialNextSucc = new_instancemethod(_simuPOP_baop.Bernullitrials_trialNextSucc,None,Bernullitrials)
Bernullitrials.setTrialSucc = new_instancemethod(_simuPOP_baop.Bernullitrials_setTrialSucc,None,Bernullitrials)
Bernullitrials.trialSuccRate = new_instancemethod(_simuPOP_baop.Bernullitrials_trialSuccRate,None,Bernullitrials)
Bernullitrials.probSuccRate = new_instancemethod(_simuPOP_baop.Bernullitrials_probSuccRate,None,Bernullitrials)
Bernullitrials_swigregister = _simuPOP_baop.Bernullitrials_swigregister
Bernullitrials_swigregister(Bernullitrials)
 
 
def moduleInfo():
  """
    Usage:
 
        moduleInfo()
 
    Details:
 
        Return a dictionary with information regarding the currently
        loaded simuPOP module. This dictionary has the following keys:
        *   revision: revision number.
        *   version: simuPOP version string.
        *   optimized: Is this module optimized (True or False).
        *   alleleType: Allele type of the module (short, long or binary).
        *   maxAllele: the maximum allowed allele state, which is 1 for
        binary modules, 255 for short modules and 65535 for long modules.
        *   compiler: the compiler that compiles this module.
        *   date: date on which this module is compiled.
        *   python: version of python.
        *   platform: platform of the module.
        *   maxNumSubPop: maximum number of subpopulations.
        *   maxIndex: maximum index size (limits population size * total
        number of marker).
        *   debug: A dictionary with debugging codes as keys and the
        status of each debugging code (True or False) as their values.
 
 
    """
  return _simuPOP_baop.moduleInfo()
 
def copyGenotype(*args, **kwargs):
  return _simuPOP_baop.copyGenotype(*args, **kwargs)
copyGenotype = _simuPOP_baop.copyGenotype
 
def clearGenotype(*args, **kwargs):
  return _simuPOP_baop.clearGenotype(*args, **kwargs)
clearGenotype = _simuPOP_baop.clearGenotype
class GenoStruTrait(object):
    """
    Details:
 
        All individuals in a population share the same genotypic
        properties such as number of chromosomes, number and position of
        loci, names of markers, chromosomes, and information fields. These
        properties are stored in this GenoStruTrait class and are
        accessible from both Individual and Population classes. Currently,
        a genotypic structure consists of
        *   Ploidy, namely the number of homologous sets of chromosomes,
        of a population. Haplodiploid population is also supported.
        *   Number of chromosomes and number of loci on each chromosome.
        *   Positions of loci, which determine the relative distance
        between loci on the same chromosome. No unit is assumed so these
        positions can be ordinal (1, 2, 3, ..., the default), in physical
        distance (bp, kb or mb), or in map distance (e.g. centiMorgan)
        depending on applications.
        *   Names of alleles, which can either be shared by all loci or be
        specified for each locus.
        *   Names of loci and chromosomes.
        *   Names of information fields attached to each individual. In
        addition to basic property access functions, this class provides
        some utility functions such as locusByName, which looks up a locus
        by its name.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self): 
        """
        Usage:
 
            GenoStruTrait()
 
        Details:
 
            A GenoStruTrait object is created with the construction of a
            Population object and cannot be initialized directly.
 
 
        """
        _simuPOP_baop.GenoStruTrait_swiginit(self,_simuPOP_baop.new_GenoStruTrait())
    def lociDist(self, *args, **kwargs):
        """
        Usage:
 
            x.lociDist(locus1, locus2)
 
        Details:
 
            Return the distance between loci locus1 and locus2 on the same
            chromosome. A negative value will be returned if locus1 is after
            locus2.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_lociDist(self, *args, **kwargs)
 
    def lociLeft(self, *args, **kwargs):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.GenoStruTrait_lociLeft(self, *args, **kwargs)
 
    def distLeft(self, *args, **kwargs):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.GenoStruTrait_distLeft(self, *args, **kwargs)
 
    def lociCovered(self, *args, **kwargs):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.GenoStruTrait_lociCovered(self, *args, **kwargs)
 
    def ploidy(self):
        """
        Usage:
 
            x.ploidy()
 
        Details:
 
            return the number of homologous sets of chromosomes, specified by
            the ploidy parameter of the Population function. Return 2 for a
            haplodiploid population because two sets of chromosomes are stored
            for both males and females in such a population.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_ploidy(self)
 
    def ploidyName(self):
        """
        Usage:
 
            x.ploidyName()
 
        Details:
 
            return the ploidy name of this population, can be one of haploid,
            diploid, haplodiploid, triploid, tetraploid or #-ploid where # is
            the ploidy number.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_ploidyName(self)
 
    def numLoci(self, *args):
        """
        Usage:
 
            x.numLoci()
 
        Details:
 
            return a list of the number of loci on all chromosomes.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_numLoci(self, *args)
 
    def sexChrom(self):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.GenoStruTrait_sexChrom(self)
 
    def isHaplodiploid(self):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.GenoStruTrait_isHaplodiploid(self)
 
    def totNumLoci(self):
        """
        Usage:
 
            x.totNumLoci()
 
        Details:
 
            return the total number of loci on all chromosomes.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_totNumLoci(self)
 
    def genoSize(self):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.GenoStruTrait_genoSize(self)
 
    def locusPos(self, *args, **kwargs):
        """
        Usage:
 
            x.locusPos(locus)
 
        Details:
 
            return the position of locus locus specified by the lociPos
            parameter of the Population function.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_locusPos(self, *args, **kwargs)
 
    def lociPos(self):
        """
        Usage:
 
            x.lociPos()
 
        Details:
 
            return the positions of all loci, specified by the lociPos
            prameter of the Population function. The default positions are 1,
            2, 3, 4, ... on each chromosome.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_lociPos(self)
 
    def numChrom(self):
        """
        Usage:
 
            x.numChrom()
 
        Details:
 
            return the number of chromosomes.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_numChrom(self)
 
    def chromBegin(self, *args, **kwargs):
        """
        Usage:
 
            x.chromBegin(chrom)
 
        Details:
 
            return the index of the first locus on chromosome chrom.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_chromBegin(self, *args, **kwargs)
 
    def chromEnd(self, *args, **kwargs):
        """
        Usage:
 
            x.chromEnd(chrom)
 
        Details:
 
            return the index of the last locus on chromosome chrom plus 1.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_chromEnd(self, *args, **kwargs)
 
    def absLocusIndex(self, *args, **kwargs):
        """
        Usage:
 
            x.absLocusIndex(chrom, locus)
 
        Details:
 
            return the absolute index of locus locus on chromosome chrom. c.f.
            chromLocusPair.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_absLocusIndex(self, *args, **kwargs)
 
    def chromLocusPair(self, *args, **kwargs):
        """
        Usage:
 
            x.chromLocusPair(locus)
 
        Details:
 
            return the chromosome and relative index of a locus using its
            absolute index locus. c.f. absLocusIndex.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_chromLocusPair(self, *args, **kwargs)
 
    def chromName(self, *args, **kwargs):
        """
        Usage:
 
            x.chromName(chrom)
 
        Details:
 
            return the name of a chromosome chrom.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_chromName(self, *args, **kwargs)
 
    def chromNames(self):
        """
        Usage:
 
            x.chromNames()
 
        Details:
 
            return a list of the names of all chromosomes.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_chromNames(self)
 
    def chromType(self, *args, **kwargs):
        """
        Usage:
 
            x.chromType(chrom)
 
        Details:
 
            return the type of a chromosome chrom (CUSTOMIZED, AUTOSOME,
            CHROMOSOME_X, or CHROMOSOME_Y).
 
 
        """
        return _simuPOP_baop.GenoStruTrait_chromType(self, *args, **kwargs)
 
    def chromTypes(self):
        """
        Usage:
 
            x.chromTypes()
 
        Details:
 
            return the type of all chromosomes (CUSTOMIZED, AUTOSOME,
            CHROMOSOME_X or CHROMOSOME_Y).
 
 
        """
        return _simuPOP_baop.GenoStruTrait_chromTypes(self)
 
    def chromByName(self, *args, **kwargs):
        """
        Usage:
 
            x.chromByName(name)
 
        Details:
 
            return the index of a chromosome by its name.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_chromByName(self, *args, **kwargs)
 
    def alleleName(self, *args, **kwargs):
        """
        Usage:
 
            x.alleleName(allele, locus=0)
 
        Details:
 
            return the name of allele allele at lcous specified by the
            alleleNames parameter of the Population function. locus could be
            ignored if alleles at all loci share the same names. If the name
            of an allele is unspecified, its value ('0', '1', '2', etc) is
            returned.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_alleleName(self, *args, **kwargs)
 
    def alleleNames(self, locus = 0):
        """
        Usage:
 
            x.alleleNames(locus=0)
 
        Details:
 
            return a list of allele names at given by the alleleNames
            parameter of the Population function. locus could be ignored if
            alleles at all loci share the same names. This list does not have
            to cover all possible allele states of a population so
            alleleNames()[allele] might fail (use alleleNames(allele)
            instead).
 
 
        """
        return _simuPOP_baop.GenoStruTrait_alleleNames(self, locus)
 
    def locusName(self, *args, **kwargs):
        """
        Usage:
 
            x.locusName(locus)
 
        Details:
 
            return the name of locus locus specified by the lociNames
            parameter of the Population function. An empty string will be
            returned if no name has been given to locus locus.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_locusName(self, *args, **kwargs)
 
    def lociNames(self):
        """
        Usage:
 
            x.lociNames()
 
        Details:
 
            return the names of all loci specified by the lociNames parameter
            of the Population function. An empty list will be returned if
            lociNames was not specified.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_lociNames(self)
 
    def locusByName(self, *args, **kwargs):
        """
        Usage:
 
            x.locusByName(name)
 
        Details:
 
            return the index of a locus with name name. Raise a ValueError if
            no locus is found. Note that empty strings are used for loci
            without name but you cannot lookup such loci using this function.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_locusByName(self, *args, **kwargs)
 
    def lociByNames(self, *args, **kwargs):
        """
        Usage:
 
            x.lociByNames(names)
 
        Details:
 
            return the indexes of loci with names names. Raise a ValueError if
            any of the loci cannot be found.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_lociByNames(self, *args, **kwargs)
 
    def hasInfoField(self, *args, **kwargs):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.GenoStruTrait_hasInfoField(self, *args, **kwargs)
 
    def infoSize(self):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.GenoStruTrait_infoSize(self)
 
    def infoFields(self):
        """
        Usage:
 
            x.infoFields()
 
        Details:
 
            return a list of the names of all information fields of the
            population.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_infoFields(self)
 
    def infoField(self, *args, **kwargs):
        """
        Usage:
 
            x.infoField(idx)
 
        Details:
 
            return the name of information field idx.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_infoField(self, *args, **kwargs)
 
    def infoIdx(self, *args, **kwargs):
        """
        Usage:
 
            x.infoIdx(name)
 
        Details:
 
            return the index of information field name. Raise an IndexError if
            name is not one of the information fields.
 
 
        """
        return _simuPOP_baop.GenoStruTrait_infoIdx(self, *args, **kwargs)
 
    __swig_destroy__ = _simuPOP_baop.delete_GenoStruTrait
GenoStruTrait.lociDist = new_instancemethod(_simuPOP_baop.GenoStruTrait_lociDist,None,GenoStruTrait)
GenoStruTrait.lociLeft = new_instancemethod(_simuPOP_baop.GenoStruTrait_lociLeft,None,GenoStruTrait)
GenoStruTrait.distLeft = new_instancemethod(_simuPOP_baop.GenoStruTrait_distLeft,None,GenoStruTrait)
GenoStruTrait.lociCovered = new_instancemethod(_simuPOP_baop.GenoStruTrait_lociCovered,None,GenoStruTrait)
GenoStruTrait.ploidy = new_instancemethod(_simuPOP_baop.GenoStruTrait_ploidy,None,GenoStruTrait)
GenoStruTrait.ploidyName = new_instancemethod(_simuPOP_baop.GenoStruTrait_ploidyName,None,GenoStruTrait)
GenoStruTrait.numLoci = new_instancemethod(_simuPOP_baop.GenoStruTrait_numLoci,None,GenoStruTrait)
GenoStruTrait.sexChrom = new_instancemethod(_simuPOP_baop.GenoStruTrait_sexChrom,None,GenoStruTrait)
GenoStruTrait.isHaplodiploid = new_instancemethod(_simuPOP_baop.GenoStruTrait_isHaplodiploid,None,GenoStruTrait)
GenoStruTrait.totNumLoci = new_instancemethod(_simuPOP_baop.GenoStruTrait_totNumLoci,None,GenoStruTrait)
GenoStruTrait.genoSize = new_instancemethod(_simuPOP_baop.GenoStruTrait_genoSize,None,GenoStruTrait)
GenoStruTrait.locusPos = new_instancemethod(_simuPOP_baop.GenoStruTrait_locusPos,None,GenoStruTrait)
GenoStruTrait.lociPos = new_instancemethod(_simuPOP_baop.GenoStruTrait_lociPos,None,GenoStruTrait)
GenoStruTrait.numChrom = new_instancemethod(_simuPOP_baop.GenoStruTrait_numChrom,None,GenoStruTrait)
GenoStruTrait.chromBegin = new_instancemethod(_simuPOP_baop.GenoStruTrait_chromBegin,None,GenoStruTrait)
GenoStruTrait.chromEnd = new_instancemethod(_simuPOP_baop.GenoStruTrait_chromEnd,None,GenoStruTrait)
GenoStruTrait.absLocusIndex = new_instancemethod(_simuPOP_baop.GenoStruTrait_absLocusIndex,None,GenoStruTrait)
GenoStruTrait.chromLocusPair = new_instancemethod(_simuPOP_baop.GenoStruTrait_chromLocusPair,None,GenoStruTrait)
GenoStruTrait.chromName = new_instancemethod(_simuPOP_baop.GenoStruTrait_chromName,None,GenoStruTrait)
GenoStruTrait.chromNames = new_instancemethod(_simuPOP_baop.GenoStruTrait_chromNames,None,GenoStruTrait)
GenoStruTrait.chromType = new_instancemethod(_simuPOP_baop.GenoStruTrait_chromType,None,GenoStruTrait)
GenoStruTrait.chromTypes = new_instancemethod(_simuPOP_baop.GenoStruTrait_chromTypes,None,GenoStruTrait)
GenoStruTrait.chromByName = new_instancemethod(_simuPOP_baop.GenoStruTrait_chromByName,None,GenoStruTrait)
GenoStruTrait.alleleName = new_instancemethod(_simuPOP_baop.GenoStruTrait_alleleName,None,GenoStruTrait)
GenoStruTrait.alleleNames = new_instancemethod(_simuPOP_baop.GenoStruTrait_alleleNames,None,GenoStruTrait)
GenoStruTrait.locusName = new_instancemethod(_simuPOP_baop.GenoStruTrait_locusName,None,GenoStruTrait)
GenoStruTrait.lociNames = new_instancemethod(_simuPOP_baop.GenoStruTrait_lociNames,None,GenoStruTrait)
GenoStruTrait.locusByName = new_instancemethod(_simuPOP_baop.GenoStruTrait_locusByName,None,GenoStruTrait)
GenoStruTrait.lociByNames = new_instancemethod(_simuPOP_baop.GenoStruTrait_lociByNames,None,GenoStruTrait)
GenoStruTrait.hasInfoField = new_instancemethod(_simuPOP_baop.GenoStruTrait_hasInfoField,None,GenoStruTrait)
GenoStruTrait.infoSize = new_instancemethod(_simuPOP_baop.GenoStruTrait_infoSize,None,GenoStruTrait)
GenoStruTrait.infoFields = new_instancemethod(_simuPOP_baop.GenoStruTrait_infoFields,None,GenoStruTrait)
GenoStruTrait.infoField = new_instancemethod(_simuPOP_baop.GenoStruTrait_infoField,None,GenoStruTrait)
GenoStruTrait.infoIdx = new_instancemethod(_simuPOP_baop.GenoStruTrait_infoIdx,None,GenoStruTrait)
GenoStruTrait_swigregister = _simuPOP_baop.GenoStruTrait_swigregister
GenoStruTrait_swigregister(GenoStruTrait)
 
class Individual(GenoStruTrait):
    """
    Details:
 
        A Population consists of individuals with the same genotypic
        structure. An Individual object cannot be created independently,
        but refences to inidividuals can be retrieved using member
        functions of a Population object. In addition to structural
        information shared by all individuals in a population (provided by
        class GenoStruTrait), the Individual class provides member
        functions to get and set genotype, sex, affection status and
        information fields of an individual.    Genotypes of an individual
        are stored sequentially and can be accessed locus by locus, or in
        batch. The alleles are arranged by position, chromosome and
        ploidy. That is to say, the first allele on the first chromosome
        of the first homologous set is followed by alleles at other loci
        on the same chromsome, then markers on the second and later
        chromosomes, followed by alleles on the second homologous set of
        the chromosomes for a diploid individual. A consequence of this
        memory layout is that alleles at the same locus of a non-haploid
        individual are separated by Individual::totNumLoci() loci. It is
        worth noting that access to invalid chromosomes, such as the Y
        chromosomes of female individuals, is not restricted.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self): 
        """
        Usage:
 
            Individual()
 
        Details:
 
            An Individual object cannot be created directly. It has to be
            accessed from a Population object using functions such as
            Population::Individual(idx).
 
 
        """
        _simuPOP_baop.Individual_swiginit(self,_simuPOP_baop.new_Individual())
    __swig_destroy__ = _simuPOP_baop.delete_Individual
    def allele(self, *args, **kwargs):
        """
        Usage:
 
            x.allele(idx, ploidy=-1, chrom=-1)
 
        Details:
 
            return the current allele at a locus, using its absolute index
            idx. If a ploidy ploidy and/or a chromosome indexes is given, idx
            is relative to the beginning of specified homologous copy of
            chromosomes (if chrom=-1) or the beginning of the specified
            homologous copy of specified chromosome (if chrom >= 0).
 
 
        """
        return _simuPOP_baop.Individual_allele(self, *args, **kwargs)
 
    def alleleChar(self, *args, **kwargs):
        """
        Usage:
 
            x.alleleChar(idx, ploidy=-1, chrom=-1)
 
        Details:
 
            return the name of allele(idx, ploidy, chrom). If idx is invalid
            (e.g. second homologus copy of chromosome Y), '_' is returned.
 
 
        """
        return _simuPOP_baop.Individual_alleleChar(self, *args, **kwargs)
 
    def setAllele(self, *args, **kwargs):
        """
        Usage:
 
            x.setAllele(allele, idx, ploidy=-1, chrom=-1)
 
        Details:
 
            set allele allele to a locus, using its absolute index idx. If a
            ploidy ploidy and/or a chromosome indexes are given, idx is
            relative to the beginning of specified homologous copy of
            chromosomes (if chrom=-1) or the beginning of the specified
            homologous copy of specified chromosome (if chrom >= 0).
 
 
        """
        return _simuPOP_baop.Individual_setAllele(self, *args, **kwargs)
 
    def genotype(self, *args, **kwargs):
        """
        Usage:
 
            x.genotype(ploidy=ALL_AVAIL, chroms=ALL_AVAIL)
 
        Details:
 
            return an editable array (a carray object) that represents all
            alleles of an individual. If ploidy or chroms is given, only
            alleles on the specified chromosomes and homologous copy of
            chromosomes will be returned. If multiple chromosomes are
            specified, there should not be gaps between chromosomes.
 
 
        """
        return _simuPOP_baop.Individual_genotype(self, *args, **kwargs)
 
    def setGenotype(self, *args, **kwargs):
        """
        Usage:
 
            x.setGenotype(geno, ploidy=ALL_AVAIL, chroms=ALL_AVAIL)
 
        Details:
 
            Fill the genotype of an individual using a list of alleles geno.
            If parameters ploidy and/or chroms are specified, alleles will be
            copied to only all or specified chromosomes on selected homologous
            copies of chromosomes. geno will be reused if its length is less
            than number of alleles to be filled.
 
 
        """
        return _simuPOP_baop.Individual_setGenotype(self, *args, **kwargs)
 
    def sex(self):
        """
        Usage:
 
            x.sex()
 
        Details:
 
            return the sex of an individual, 1 for male and 2 for female.
 
 
        """
        return _simuPOP_baop.Individual_sex(self)
 
    def setSex(self, *args, **kwargs):
        """
        Usage:
 
            x.setSex(sex)
 
        Details:
 
            set individual sex to MALE or FEMALE.
 
 
        """
        return _simuPOP_baop.Individual_setSex(self, *args, **kwargs)
 
    def affected(self):
        """
        Usage:
 
            x.affected()
 
        Details:
 
            Return True if this individual is affected.
 
 
        """
        return _simuPOP_baop.Individual_affected(self)
 
    def setAffected(self, *args, **kwargs):
        """
        Usage:
 
            x.setAffected(affected)
 
        Details:
 
            set affection status to affected (True or False).
 
 
        """
        return _simuPOP_baop.Individual_setAffected(self, *args, **kwargs)
 
    def info(self, *args, **kwargs):
        """
        Usage:
 
            x.info(field)
 
        Details:
 
            Return the value of an information field filed (by index or name).
            ind.info(name) is equivalent to ind.name although the function
            form allows the use of indexes of information fieldes.
 
 
        """
        return _simuPOP_baop.Individual_info(self, *args, **kwargs)
 
    def setInfo(self, *args, **kwargs):
        """
        Usage:
 
            x.setInfo(value, field)
 
        Details:
 
            set the value of an information field field (by index or name) to
            value. ind.setInfo(value, field) is equivalent to ind.field =
            value although the function form allows the use of indexes of
            information fieldes.
 
 
        """
        return _simuPOP_baop.Individual_setInfo(self, *args, **kwargs)
 
Individual.allele = new_instancemethod(_simuPOP_baop.Individual_allele,None,Individual)
Individual.alleleChar = new_instancemethod(_simuPOP_baop.Individual_alleleChar,None,Individual)
Individual.setAllele = new_instancemethod(_simuPOP_baop.Individual_setAllele,None,Individual)
Individual.genotype = new_instancemethod(_simuPOP_baop.Individual_genotype,None,Individual)
Individual.setGenotype = new_instancemethod(_simuPOP_baop.Individual_setGenotype,None,Individual)
Individual.sex = new_instancemethod(_simuPOP_baop.Individual_sex,None,Individual)
Individual.setSex = new_instancemethod(_simuPOP_baop.Individual_setSex,None,Individual)
Individual.affected = new_instancemethod(_simuPOP_baop.Individual_affected,None,Individual)
Individual.setAffected = new_instancemethod(_simuPOP_baop.Individual_setAffected,None,Individual)
Individual.info = new_instancemethod(_simuPOP_baop.Individual_info,None,Individual)
Individual.setInfo = new_instancemethod(_simuPOP_baop.Individual_setInfo,None,Individual)
Individual.genoEnd = new_instancemethod(_simuPOP_baop.Individual_genoEnd,None,Individual)
Individual.__eq__ = new_instancemethod(_simuPOP_baop.Individual___eq__,None,Individual)
Individual.__ne__ = new_instancemethod(_simuPOP_baop.Individual___ne__,None,Individual)
Individual.__cmp__ = new_instancemethod(_simuPOP_baop.Individual___cmp__,None,Individual)
Individual_swigregister = _simuPOP_baop.Individual_swigregister
Individual_swigregister(Individual)
 
class vspID(object):
    """
    Details:
 
        A class to specify virtual subpopulation, which is composed of a
        subpopulation ID and a virtual subpopulation ID.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        Usage:
 
            vspID(id)
 
        Details:
 
            Create a subpopulation id. Accept id as well as names.
 
 
        """
        _simuPOP_baop.vspID_swiginit(self,_simuPOP_baop.new_vspID(*args))
    __swig_destroy__ = _simuPOP_baop.delete_vspID
    def resolve(self, *args, **kwargs):
        """
        Usage:
 
            x.resolve(pop)
 
 
        """
        return _simuPOP_baop.vspID_resolve(self, *args, **kwargs)
 
vspID.__eq__ = new_instancemethod(_simuPOP_baop.vspID___eq__,None,vspID)
vspID.resolve = new_instancemethod(_simuPOP_baop.vspID_resolve,None,vspID)
vspID_swigregister = _simuPOP_baop.vspID_swigregister
vspID_swigregister(vspID)
 
 
def __lshift__(*args, **kwargs):
  return _simuPOP_baop.__lshift__(*args, **kwargs)
__lshift__ = _simuPOP_baop.__lshift__
class subPopList(object):
    """
    Details:
 
        A class to specify (virtual) subpopulation list. Using a dedicated
        class allows users to specify a single subpopulation, or a list of
        (virutal) subpoulations easily.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, obj = None): 
        """
        Usage:
 
            subPopList(obj=None)
 
 
        """
        _simuPOP_baop.subPopList_swiginit(self,_simuPOP_baop.new_subPopList(obj))
    def expandFrom(self, *args, **kwargs):
        """
        Description:
 
            expand ALL_AVAIL and [(ALL_AVAIL, vsp), ...] according to pop
 
        Usage:
 
            x.expandFrom(pop)
 
 
        """
        return _simuPOP_baop.subPopList_expandFrom(self, *args, **kwargs)
 
    __swig_destroy__ = _simuPOP_baop.delete_subPopList
subPopList.__len__ = new_instancemethod(_simuPOP_baop.subPopList___len__,None,subPopList)
subPopList.push_back = new_instancemethod(_simuPOP_baop.subPopList_push_back,None,subPopList)
subPopList.begin = new_instancemethod(_simuPOP_baop.subPopList_begin,None,subPopList)
subPopList.end = new_instancemethod(_simuPOP_baop.subPopList_end,None,subPopList)
subPopList.expandFrom = new_instancemethod(_simuPOP_baop.subPopList_expandFrom,None,subPopList)
subPopList_swigregister = _simuPOP_baop.subPopList_swigregister
subPopList_swigregister(subPopList)
 
class BaseVspSplitter(object):
    """
    Details:
 
        This class is the base class of all virtual subpopulation (VSP)
        splitters, which provide ways to define groups of individuals in a
        subpopulation who share certain properties. A splitter defines a
        fixed number of named VSPs. They do not have to add up to the
        whole subpopulation, nor do they have to be distinct. After a
        splitter is assigned to a population, many functions and operators
        can be applied to individuals within specified VSPs.  Each VSP has
        a name. A default name is determined by each splitter but you can
        also assign a name to each VSP. The name of a VSP can be retrieved
        by function BaseVspSplitter.name() or Population.subPopName().
        Only one VSP splitter can be assigned to a population, which
        defined VSPs for all its subpopulations. If different splitters
        are needed for different subpopulations, a CombinedSplitter can be
        used.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    def clone(self):
        """
        Usage:
 
            x.clone()
 
        Details:
 
            All VSP splitter defines a clone() function to create an identical
            copy of itself.
 
 
        """
        return _simuPOP_baop.BaseVspSplitter_clone(self)
 
    __swig_destroy__ = _simuPOP_baop.delete_BaseVspSplitter
    def numVirtualSubPop(self):
        """
        Usage:
 
            x.numVirtualSubPop()
 
        Details:
 
            Return the number of VSPs defined by this splitter.
 
 
        """
        return _simuPOP_baop.BaseVspSplitter_numVirtualSubPop(self)
 
    def name(self, *args, **kwargs):
        """
        Usage:
 
            x.name(vsp)
 
        Details:
 
            Return the name of VSP vsp (an index between 0 and
            numVirtualSubPop()).
 
 
        """
        return _simuPOP_baop.BaseVspSplitter_name(self, *args, **kwargs)
 
    def vspByName(self, *args, **kwargs):
        """
        Usage:
 
            x.vspByName(name)
 
        Details:
 
            Return the index of a virtual subpopulation from its name.
 
 
        """
        return _simuPOP_baop.BaseVspSplitter_vspByName(self, *args, **kwargs)
 
BaseVspSplitter.clone = new_instancemethod(_simuPOP_baop.BaseVspSplitter_clone,None,BaseVspSplitter)
BaseVspSplitter.numVirtualSubPop = new_instancemethod(_simuPOP_baop.BaseVspSplitter_numVirtualSubPop,None,BaseVspSplitter)
BaseVspSplitter.name = new_instancemethod(_simuPOP_baop.BaseVspSplitter_name,None,BaseVspSplitter)
BaseVspSplitter.vspByName = new_instancemethod(_simuPOP_baop.BaseVspSplitter_vspByName,None,BaseVspSplitter)
BaseVspSplitter_swigregister = _simuPOP_baop.BaseVspSplitter_swigregister
BaseVspSplitter_swigregister(BaseVspSplitter)
 
class CombinedSplitter(BaseVspSplitter):
    """
    Details:
 
        This splitter takes several splitters and stacks their VSPs
        together. For example, if the first splitter defines 3 VSPs and
        the second splitter defines 2, the two VSPs from the second
        splitter become the fourth (index 3) and the fifth (index 4) VSPs
        of the combined splitter. In addition, a new set of VSPs could be
        defined as the union of one or more of the original VSPs. This
        splitter is usually used to define different types of VSPs to a
        population.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            CombinedSplitter(splitters=[], vspMap=[], names=[])
 
        Details:
 
            Create a combined splitter using a list of splitters. For example,
            CombinedSplitter([SexSplitter(), AffectionSplitter()]) defines a
            combined splitter with four VSPs, defined by male (vsp 0), female
            (vsp 1), unaffected (vsp 2) and affected individuals (vsp 3).
            Optionally, a new set of VSPs could be defined by parameter
            vspMap. Each item in this parameter is a list of VSPs that will be
            combined to a single VSP. For example, vspMap=[(0, 2), (1, 3)] in
            the previous example will define two VSPs defined by male or
            unaffected, and female or affected individuals. VSP names are
            usually determined by splitters, but can also be specified using
            parameter names.
 
 
        """
        _simuPOP_baop.CombinedSplitter_swiginit(self,_simuPOP_baop.new_CombinedSplitter(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_CombinedSplitter
CombinedSplitter_swigregister = _simuPOP_baop.CombinedSplitter_swigregister
CombinedSplitter_swigregister(CombinedSplitter)
 
class ProductSplitter(BaseVspSplitter):
    """
    Details:
 
        This splitter takes several splitters and take their intersections
        as new VSPs. For example, if the first splitter defines 3 VSPs and
        the second splitter defines 2, 6 VSPs will be defined by splitting
        3 VSPs defined by the first splitter each to two VSPs. This
        splitter is usually used to define finer VSPs from existing VSPs.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            ProductSplitter(splitters=[], names=[])
 
        Details:
 
            Create a product splitter using a list of splitters. For example,
            ProductSplitter([SexSplitter(), AffectionSplitter()]) defines four
            VSPs by male unaffected, male affected, female unaffected, and
            female affected individuals. VSP names are usually determined by
            splitters, but can also be specified using parameter names.
 
 
        """
        _simuPOP_baop.ProductSplitter_swiginit(self,_simuPOP_baop.new_ProductSplitter(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_ProductSplitter
ProductSplitter_swigregister = _simuPOP_baop.ProductSplitter_swigregister
ProductSplitter_swigregister(ProductSplitter)
 
class SexSplitter(BaseVspSplitter):
    """
    Details:
 
        This splitter defines two VSPs by individual sex. The first VSP
        consists of all male individuals and the second VSP consists of
        all females in a subpopulation.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            SexSplitter(names=[])
 
        Details:
 
            Create a sex splitter that defines male and female VSPs. These
            VSPs are named Male and Female unless a new set of names are
            specified by parameter names.
 
 
        """
        _simuPOP_baop.SexSplitter_swiginit(self,_simuPOP_baop.new_SexSplitter(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_SexSplitter
SexSplitter_swigregister = _simuPOP_baop.SexSplitter_swigregister
SexSplitter_swigregister(SexSplitter)
 
class AffectionSplitter(BaseVspSplitter):
    """
    Details:
 
        This class defines two VSPs according individual affection status.
        The first VSP consists of unaffected invidiauls and the second VSP
        consists of affected ones.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            AffectionSplitter(names=[])
 
        Details:
 
            Create a splitter that defined two VSPs by affection status.These
            VSPs are named Unaffected and Affected unless a new set of names
            are specified by parameter names.
 
 
        """
        _simuPOP_baop.AffectionSplitter_swiginit(self,_simuPOP_baop.new_AffectionSplitter(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_AffectionSplitter
AffectionSplitter_swigregister = _simuPOP_baop.AffectionSplitter_swigregister
AffectionSplitter_swigregister(AffectionSplitter)
 
class InfoSplitter(BaseVspSplitter):
    """
    Details:
 
        This splitter defines VSPs according to the value of an
        information field of each indivdiual. A VSP is defined either by a
        value or a range of values.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            InfoSplitter(field, values=[], cutoff=[], ranges=[], names=[])
 
        Details:
 
            Create an infomration splitter using information field field. If
            parameter values is specified, each item in this list defines a
            VSP in which all individuals have this value at information field
            field. If a set of cutoff values are defined in parameter cutoff,
            individuals are grouped by intervals defined by these cutoff
            values. For example, cutoff=[1,2] defines three VSPs with v < 1, 1
            <= v < 2 and v >=2 where v is the value of an individual at
            information field field. If parameter ranges is specified, each
            range defines a VSP. For example, ranges=[[1, 3], [2, 5]] defines
            two VSPs with 1 <= v < 3 and 2 <= 3 < 5. Of course, only one of
            the parameters values, cutoff and ranges should be defined, and
            values in cutoff should be distinct, and in an increasing order. A
            default set of names are given to each VSP unless a new set of
            names is given by parameter names.
 
 
        """
        _simuPOP_baop.InfoSplitter_swiginit(self,_simuPOP_baop.new_InfoSplitter(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_InfoSplitter
InfoSplitter_swigregister = _simuPOP_baop.InfoSplitter_swigregister
InfoSplitter_swigregister(InfoSplitter)
 
class ProportionSplitter(BaseVspSplitter):
    """
    Details:
 
        This splitter divides subpopulations into several VSPs by
        proportion.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            ProportionSplitter(proportions=[], names=[])
 
        Details:
 
            Create a splitter that divides subpopulations by proportions,
            which should be a list of float numbers (between 0 and 1) that add
            up to 1. A default set of names are given to each VSP unless a new
            set of names is given by parameter names.
 
 
        """
        _simuPOP_baop.ProportionSplitter_swiginit(self,_simuPOP_baop.new_ProportionSplitter(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_ProportionSplitter
ProportionSplitter_swigregister = _simuPOP_baop.ProportionSplitter_swigregister
ProportionSplitter_swigregister(ProportionSplitter)
 
class RangeSplitter(BaseVspSplitter):
    """
    Details:
 
        This class defines a splitter that groups individuals in certain
        ranges into VSPs.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            RangeSplitter(ranges, names=[])
 
        Details:
 
            Create a splitter according to a number of individual ranges
            defined in ranges. For example, RangeSplitter(ranges=[[0, 20],
            [40, 50]]) defines two VSPs. The first VSP consists of individuals
            0, 1, ..., 19, and the sceond VSP consists of individuals 40, 41,
            ..., 49. Note that a nested list has to be used even if only one
            range is defined. A default set of names are given to each VSP
            unless a new set of names is given by parameter names.
 
 
        """
        _simuPOP_baop.RangeSplitter_swiginit(self,_simuPOP_baop.new_RangeSplitter(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_RangeSplitter
RangeSplitter_swigregister = _simuPOP_baop.RangeSplitter_swigregister
RangeSplitter_swigregister(RangeSplitter)
 
class GenotypeSplitter(BaseVspSplitter):
    """
    Details:
 
        This class defines a VSP splitter that defines VSPs according to
        individual genotype at specified loci.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            GenotypeSplitter(loci, alleles, phase=False, names=[])
 
        Details:
 
            Create a splitter that defines VSPs by individual genotype at loci
            (can be indexes or names of one or more loci). Each list in a list
            allele defines a VSP, which is a list of allowed alleles at these
            loci. If only one VSP is defined, the outer list of the nested
            list can be ignored. If phase if true, the order of alleles in
            each list is significant. If more than one set of alleles are
            given, Individuals having either of them is qualified.  For
            example, in a haploid population, loci=1, alleles=[0, 1] defines a
            VSP with individuals having allele 0 or 1 at locus 1, alleles=[[0,
            1], [2]] defines two VSPs with indivdiuals in the second VSP
            having allele 2 at locus 1. If multiple loci are involved, alleles
            at each locus need to be defined. For example, VSP defined by
            loci=[0, 1], alleles=[0, 1, 1, 1] consists of individuals having
            alleles [0, 1] or [1, 1] at loci [0, 1].  In a haploid population,
            loci=1, alleles=[0, 1] defines a VSP with individuals having
            genotype [0, 1] or [1, 0] at locus 1. alleles[[0, 1], [2, 2]]
            defines two VSPs with indivdiuals in the second VSP having
            genotype [2, 2] at locus 1. If phase is set to True, the first VSP
            will only has individuals with genotype [0, 1]. In the multiple
            loci case, alleles should be arranged by haplotypes, for example,
            loci=[0, 1], alleles=[0, 0, 1, 1], phase=True defines a VSP with
            individuals having genotype -0-0-, -1-1- at loci 0 and 1. If
            phase=False (default), genotypes -1-1-, -0-0-, -0-1- and -1-0- are
            all allowed.  A default set of names are given to each VSP unless
            a new set of names is given by parameter names.
 
 
        """
        _simuPOP_baop.GenotypeSplitter_swiginit(self,_simuPOP_baop.new_GenotypeSplitter(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_GenotypeSplitter
GenotypeSplitter_swigregister = _simuPOP_baop.GenotypeSplitter_swigregister
GenotypeSplitter_swigregister(GenotypeSplitter)
 
class pyIndIterator(object):
    """
    Details:
 
        this class implements a Python itertor class that can be used to
        iterate through individuals in a (sub)population. If allInds are
        true, visiblility of individuals will not be checked. Otherwise, a
        functor will be used to check if indiviudals belong to a specified
        virtual subpopulation.  An instance of this class is returned by
        population::Individuals() and Population::Individuals(subPop)
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            pyIndIterator(begin, end, allInds, func)
 
 
        """
        _simuPOP_baop.pyIndIterator_swiginit(self,_simuPOP_baop.new_pyIndIterator(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_pyIndIterator
    def next(self):
        """
        Usage:
 
            x.__next__()
 
 
        """
        return _simuPOP_baop.pyIndIterator_next(self)
 
pyIndIterator.__iter__ = new_instancemethod(_simuPOP_baop.pyIndIterator___iter__,None,pyIndIterator)
pyIndIterator.next = new_instancemethod(_simuPOP_baop.pyIndIterator_next,None,pyIndIterator)
pyIndIterator.__next__ = new_instancemethod(_simuPOP_baop.pyIndIterator___next__,None,pyIndIterator)
pyIndIterator_swigregister = _simuPOP_baop.pyIndIterator_swigregister
pyIndIterator_swigregister(pyIndIterator)
 
class Population(GenoStruTrait):
    """
    Details:
 
        A simuPOP population consists of individuals of the same genotypic
        structure, organized by generations, subpopulations and virtual
        subpopulations. It also contains a Python dictionary that is used
        to store arbitrary population variables.  In addition to genotypic
        structured related functions provided by the GenoStruTrait class,
        the population class provides a large number of member functions
        that can be used to
        *   Create, copy and compare populations.
        *   Manipulate subpopulations. A population can be divided into
        several subpopulations. Because individuals only mate with
        individuals within the same subpopulation, exchange of genetic
        information across subpopulations can only be done through
        migration. A number of functions are provided to access
        subpopulation structure information, and to merge and split
        subpopulations.
        *   Define and access virtual subpopulations. A virtual
        subpopulation splitter can be assigned to a population, which
        defines groups of individuals called virtual subpopulations (VSP)
        within each subpopulation.
        *   Access individuals individually, or through iterators that
        iterate through individuals in (virtual) subpopulations.
        *   Access genotype and information fields of individuals at the
        population level. From a population point of view, all genotypes
        are arranged sequentially individual by individual. Please refer
        to class Individual for an introduction to genotype arragement of
        each individual.
        *   Store and access ancestral generations. A population can save
        arbitrary number of ancestral generations. It is possible to
        directly access an ancestor, or make an ancestral generation the
        current generation for more efficient access.
        *   Insert or remove loci, resize (shrink or expand) a population,
        sample from a population, or merge with other populations.
        *   Manipulate population variables and evaluate expressions in
        this local namespace.
        *   Save and load a population.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            Population(size=[], ploidy=2, loci=[], chromTypes=[],
              lociPos=[], ancGen=0, chromNames=[], alleleNames=[],
              lociNames=[], subPopNames=[], infoFields=[])
 
        Details:
 
            The following parameters are used to create a population object:
 
        Arguments:
 
            size:           A list of subpopulation sizes. The length of this
                            list determines the number of subpopulations of
                            this population. If there is no subpopulation,
                            size=[popSize] can be written as size=popSize.
            ploidy:         Number of homologous sets of chromosomes. Default
                            to 2 (diploid). For efficiency considerations, all
                            chromosomes have the same number of homologous
                            sets, even if some customized chromosomes or some
                            individuals (e.g. males in a haplodiploid
                            population) have different numbers of homologous
                            sets. The first case is handled by setting
                            chromTypes of each chromosome. Only the
                            haplodiploid populations are handled for the
                            second case, for which ploidy=HAPLODIPLOID should
                            be used.
            loci:           A list of numbers of loci on each chromosome. The
                            length of this parameter determines the number of
                            chromosomes. If there is only one chromosome,
                            numLoci instead of [numLoci] can be used.
            chromTypes:     A list that specifies the type of each chromosome,
                            which can be AUTOSOME, CHROMOSOME_X, CHROMOSOME_Y,
                            or CUSTOMIZED. All chromosomes are assumed to be
                            autosomes if this parameter is ignored. Sex
                            chromosome can only be specified in a diploid
                            population where the sex of an individual is
                            determined by the existence of these chromosomes
                            using the XX (FEMALE) and XY (MALE) convention.
                            Both sex chromosomes have to be available and be
                            specified only once. Because chromosomes X and Y
                            are treated as two chromosomes, recombination on
                            the pseudo-autosomal regions of the sex chromsomes
                            is not supported. CUSTOMIZED chromosomes are
                            special chromosomes whose inheritance patterns are
                            undefined. They rely on user-defined functions and
                            operators to be passed from parents to offspring.
                            Multiple customized chromosomes have to be
                            arranged consecutively.
            lociPos:        Positions of all loci on all chromosome, as a list
                            of float numbers. Default to 1, 2, ... etc on each
                            chromosome. lociPos should be arranged chromosome
                            by chromosome. If lociPos are not in order within
                            a chromosome, they will be re-arranged along with
                            corresponding lociNames (if specified).
            ancGen:         Number of the most recent ancestral generations to
                            keep during evolution. Default to 0, which means
                            only the current generation will be kept. If it is
                            set to -1, all ancestral generations will be kept
                            in this population (and exhaust your computer RAM
                            quickly).
            chromNames:     A list of chromosome names. Default to '' for all
                            chromosomes.
            alleleNames:    A list or a nested list of allele names. If a list
                            of alleles is given, it will be used for all loci
                            in this population. For example,
                            alleleNames=('A','C','T','G') gives names A, C, T,
                            and G to alleles 0, 1, 2, and 3 respectively. If a
                            nested list of names is given, it should specify
                            alleles names for all loci.
            lociNames:      A list of names for each locus. It can be empty or
                            a list of unique names for each locus. If loci are
                            not specified in order, loci names will be
                            rearranged according to their position on the
                            chromosome.
            subPopNames:    A list of subpopulation names. All subpopulations
                            will have name '' if this parameter is not
                            specified.
            infoFields:     Names of information fields (named float number)
                            that will be attached to each individual.
 
 
        """
        _simuPOP_baop.Population_swiginit(self,_simuPOP_baop.new_Population(*args, **kwargs))
    def clone(self):
        """
        Usage:
 
            x.clone()
 
        Details:
 
            Create a cloned copy of a population. Note that Python statement
            pop1 = pop only creates a reference to an existing population pop.
 
 
        """
        return _simuPOP_baop.Population_clone(self)
 
    def swap(self, *args, **kwargs):
        """
        Usage:
 
            x.swap(rhs)
 
        Details:
 
            Swap the content of two population objects, which can be handy in
            some particular circumstances. For example, you could swap out a
            population in a simulator.
 
 
        """
        return _simuPOP_baop.Population_swap(self, *args, **kwargs)
 
    __swig_destroy__ = _simuPOP_baop.delete_Population
    def setVirtualSplitter(self, *args, **kwargs):
        """
        Usage:
 
            x.setVirtualSplitter(splitter)
 
        Details:
 
            Set a VSP splitter to the population, which defines the same VSPs
            for all subpopulations. If different VSPs are needed for different
            subpopulations, a CombinedSplitter can be used to make these VSPs
            available to all subpopulations.
 
 
        """
        return _simuPOP_baop.Population_setVirtualSplitter(self, *args, **kwargs)
 
    def numVirtualSubPop(self):
        """
        Usage:
 
            x.numVirtualSubPop()
 
        Details:
 
            Return the number of virtual subpopulations (VSP) defined by a VSP
            splitter. Return 0 if no VSP is defined.
 
 
        """
        return _simuPOP_baop.Population_numVirtualSubPop(self)
 
    def activateVirtualSubPop(self, *args, **kwargs):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.Population_activateVirtualSubPop(self, *args, **kwargs)
 
    def deactivateVirtualSubPop(self, *args, **kwargs):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.Population_deactivateVirtualSubPop(self, *args, **kwargs)
 
    def fitGenoStru(self, *args, **kwargs):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.Population_fitGenoStru(self, *args, **kwargs)
 
    def setSubPopStru(self, *args, **kwargs):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.Population_setSubPopStru(self, *args, **kwargs)
 
    def numSubPop(self):
        """
        Usage:
 
            x.numSubPop()
 
        Details:
 
            Return the number of subpopulations in a population. Return 1 if
            there is no subpopulation structure.
 
 
        """
        return _simuPOP_baop.Population_numSubPop(self)
 
    def subPopSize(self, *args, **kwargs):
        """
        Usage:
 
            x.subPopSize(subPop=[], ancGen=-1)
 
        Details:
 
            Return the size of a subpopulation (subPopSize(sp)) or a virtual
            subpopulation (subPopSize([sp, vsp])) in the current generation
            (default) or a specified ancestral generation ancGen. If no subpop
            is given, it is the same as popSize(ancGen). Population and
            virtual subpopulation names can be used.
 
 
        """
        return _simuPOP_baop.Population_subPopSize(self, *args, **kwargs)
 
    def subPopByName(self, *args, **kwargs):
        """
        Usage:
 
            x.subPopByName(name)
 
        Details:
 
            Return the index of the first subpopulation with name name. An
            IndexError will be raised if subpopulations are not named, or if
            no subpopulation with name name is found. Virtual subpopulation
            name is not supported.
 
 
        """
        return _simuPOP_baop.Population_subPopByName(self, *args, **kwargs)
 
    def subPopName(self, *args, **kwargs):
        """
        Usage:
 
            x.subPopName(subPop)
 
        Details:
 
            Return the "spName - vspName" (virtual named subpopulation), ""
            (unnamed non-virtual subpopulation), "spName" (named
            subpopulation) or "vspName" (unnamed virtual subpopulation),
            depending on whether subpopulation is named or if subPop is
            virtual.
 
 
        """
        return _simuPOP_baop.Population_subPopName(self, *args, **kwargs)
 
    def subPopNames(self):
        """
        Usage:
 
            x.subPopNames()
 
        Details:
 
            Return the names of all subpopulations (excluding virtual
            subpopulations). An empty string will be returned for unnamed
            subpopulations.
 
 
        """
        return _simuPOP_baop.Population_subPopNames(self)
 
    def setSubPopName(self, *args, **kwargs):
        """
        Usage:
 
            x.setSubPopName(name, subPop)
 
        Details:
 
            Assign a name name to subpopulation subPop. Note that
            subpopulation names do not have to be unique.
 
 
        """
        return _simuPOP_baop.Population_setSubPopName(self, *args, **kwargs)
 
    def subPopSizes(self, *args, **kwargs):
        """
        Usage:
 
            x.subPopSizes(ancGen=-1)
 
        Details:
 
            Return the sizes of all subpopulations at the current generation
            (default) or specified ancestral generation ancGen. Virtual
            subpopulations are not considered.
 
 
        """
        return _simuPOP_baop.Population_subPopSizes(self, *args, **kwargs)
 
    def popSize(self, *args, **kwargs):
        """
        Usage:
 
            x.popSize(ancGen=-1)
 
        Details:
 
            Return the total number of individuals in all subpopulations of
            the current generation (default) or the an ancestral generation
            ancGen.
 
 
        """
        return _simuPOP_baop.Population_popSize(self, *args, **kwargs)
 
    def absIndIndex(self, *args, **kwargs):
        """
        Usage:
 
            x.absIndIndex(idx, subPop)
 
        Details:
 
            return the absolute index of an individual idx in subpopulation
            subPop.
 
 
        """
        return _simuPOP_baop.Population_absIndIndex(self, *args, **kwargs)
 
    def subPopIndPair(self, *args, **kwargs):
        """
        Usage:
 
            x.subPopIndPair(idx)
 
        Details:
 
            Return the subpopulation ID and relative index of an individual,
            given its absolute index idx.
 
 
        """
        return _simuPOP_baop.Population_subPopIndPair(self, *args, **kwargs)
 
    def subPopBegin(self, *args, **kwargs):
        """
        Usage:
 
            x.subPopBegin(subPop)
 
        Details:
 
            Return the index of the first individual in subpopulation subPop.
 
 
        """
        return _simuPOP_baop.Population_subPopBegin(self, *args, **kwargs)
 
    def subPopEnd(self, *args, **kwargs):
        """
        Usage:
 
            x.subPopEnd(subPop)
 
        Details:
 
            Return the index of the last individual in subpopulation subPop
            plus 1, so that range(subPopBegin(subPop), subPopEnd(subPop) can
            iterate through the index of all individuals in subpopulation
            subPop.
 
 
        """
        return _simuPOP_baop.Population_subPopEnd(self, *args, **kwargs)
 
    def individual(self, *args, **kwargs):
        """
        Usage:
 
            x.individual(idx, subPop=[])
 
        Details:
 
            Return a refernce to individual idx in the population (if
            subPop=[], default) or a subpopulation (if subPop=sp). Virtual
            subpopulation is not supported. Note that a float idx is
            acceptable as long as it rounds closely to an integer.
 
 
        """
        return _simuPOP_baop.Population_individual(self, *args, **kwargs)
 
    def indByID(self, *args, **kwargs):
        """
        Usage:
 
            x.indByID(id, ancGens=ALL_AVAIL, idField="ind_id")
 
        Details:
 
            Return a reference to individual with id stored in information
            field idField (default to ind_id). This function by default search
            the present and all ancestral generations (ancGen=ALL_AVAIL), but
            you can limit the search in specific generations if you know which
            generations to search (ancGens=[0,1] for present and parental
            generations) or UNSPECIFIED to search only the current generation.
            If no individual with id is found, an IndexError will be raised. A
            float id is acceptable as long as it rounds closely to an integer.
            Note that this function uses a dynamic searching algorithm which
            tends to be slow. If you need to look for multiple individuals
            from a static population, you might want to convert a population
            object to a pedigree object and use function Pedigree.indByID.
 
 
        """
        return _simuPOP_baop.Population_indByID(self, *args, **kwargs)
 
    def ancestor(self, *args, **kwargs):
        """
        Usage:
 
            x.ancestor(idx, gen, subPop=[])
 
        Details:
 
            Return a reference to individual idx in ancestral generation gen.
            The correct individual will be returned even if the current
            generation is not the present one (see also useAncestralGen). If a
            valid subPop is specified, index is relative to that subPop.
            Virtual subpopulation is not supported. Note that a float idx is
            acceptable as long as it rounds closely to an integer.
 
 
        """
        return _simuPOP_baop.Population_ancestor(self, *args, **kwargs)
 
    def individuals(self, *args, **kwargs):
        """
        Usage:
 
            x.individuals(subPop=[])
 
        Details:
 
            Return an iterator that can be used to iterate through all
            individuals in a population (if subPop=[], default), or a
            (virtual) subpopulation (subPop=spID or (spID, vspID)). If you
            would like to iterate through multiple subpopulations in multiple
            ancestral generations, please use function
            Population.allIndividuals().
 
 
        """
        return _simuPOP_baop.Population_individuals(self, *args, **kwargs)
 
    def genotype(self, *args, **kwargs):
        """
        Usage:
 
            x.genotype(subPop=[])
 
        Details:
 
            Return an editable array of the genotype of all individuals in a
            population (if subPop=[], default), or individuals in a
            subpopulation subPop. Virtual subpopulation is unsupported.
 
 
        """
        return _simuPOP_baop.Population_genotype(self, *args, **kwargs)
 
    def setGenotype(self, *args, **kwargs):
        """
        Usage:
 
            x.setGenotype(geno, subPop=[])
 
        Details:
 
            Fill the genotype of all individuals in a population (if
            subPop=[]) or in a (virtual) subpopulation subPop (if subPop=sp or
            (sp, vsp)) using a list of alleles geno. geno will be reused if
            its length is less than subPopSize(subPop)*totNumLoci()*ploidy().
 
 
        """
        return _simuPOP_baop.Population_setGenotype(self, *args, **kwargs)
 
    def sortIndividuals(self, *args, **kwargs):
        """
        Usage:
 
            x.sortIndividuals(infoFields)
 
        Details:
 
            Sort individuals according to values at specified information
            fields (infoFields). Individuals will be sorted at an increasing
            order.
 
 
        """
        return _simuPOP_baop.Population_sortIndividuals(self, *args, **kwargs)
 
    def setSubPopByIndInfo(self, *args, **kwargs):
        """
        Usage:
 
            x.setSubPopByIndInfo(field)
 
        Details:
 
            Rearrange individuals to their new subpopulations according to
            their integer values at information field field (value returned by
            Individual::info(field)). individuals with negative values at this
            field will be removed. Existing subpopulation names are kept. New
            subpopulations will have empty names.
 
 
        """
        return _simuPOP_baop.Population_setSubPopByIndInfo(self, *args, **kwargs)
 
    def splitSubPop(self, *args, **kwargs):
        """
        Usage:
 
            x.splitSubPop(subPop, sizes, names=[])
 
        Details:
 
            Split subpopulation subPop into subpopulations of given sizes,
            which should add up to the size of subpopulation subPop or 1, in
            which case sizes are treated as proportions. If subPop is not the
            last subpopulation, indexes of subpopulations after subPop are
            shifted. If subPop is named, the same name will be given to all
            new subpopulations unless a new set of names are specified for
            these subpopulations. This function returns the IDs of split
            subpopulations.
 
 
        """
        return _simuPOP_baop.Population_splitSubPop(self, *args, **kwargs)
 
    def removeSubPops(self, *args, **kwargs):
        """
        Usage:
 
            x.removeSubPops(subPops)
 
        Details:
 
            Remove (virtual) subpopulation(s) subPops and all their
            individuals. This function can be used to remove complete
            subpopulations (with shifted subpopulation indexes) or individuals
            belonging to virtual subpopulations of a subpopulation. In the
            latter case, the subpopulations are kept even if all individuals
            have been removed. This function only handles the present
            generation.
 
 
        """
        return _simuPOP_baop.Population_removeSubPops(self, *args, **kwargs)
 
    def removeIndividuals(self, *args, **kwargs):
        """
        Usage:
 
            x.removeIndividuals(indexes=[], IDs=[], idField="ind_id",
              filter=None)
 
        Details:
 
            remove individual(s) by absolute indexes (parameter index) or
            their IDs (parameter IDs), or using a filter function (paramter
            filter). If indexes are used, only individuals at the current
            generation will be removed. If IDs are used, all individuals with
            one of the IDs at information field idField (default to "ind_id")
            will be removed. Although "ind_id" usually stores unique IDs of
            individuals, this function is frequently used to remove groups of
            individuals with the same value at an information field. An
            IndexError will be raised if an index is out of bound, but no
            error will be given if an invalid ID is specified. In the last
            case, a user-defined function should be provided. This function
            should accept parameter "ind" or one or more of the information
            fields. All individuals, including ancestors if there are multiple
            ancestral generations, will be passed to this function.
            Individuals that returns True will be removed. This function does
            not affect subpopulation structure in the sense that a
            subpopulation will be kept even if all individuals from it are
            removed.
 
 
        """
        return _simuPOP_baop.Population_removeIndividuals(self, *args, **kwargs)
 
    def mergeSubPops(self, *args, **kwargs):
        """
        Usage:
 
            x.mergeSubPops(subPops=ALL_AVAIL, name="")
 
        Details:
 
            Merge subpopulations subPops. If subPops is ALL_AVAIL (default),
            all subpopulations will be merged. subPops do not have to be
            adjacent to each other. They will all be merged to the
            subpopulation with the smallest subpopulation ID. Indexes of the
            rest of the subpopulation may be changed. A new name can be
            assigned to the merged subpopulation through parameter name (an
            empty name will be ignored). This function returns the ID of the
            merged subpopulation.
 
 
        """
        return _simuPOP_baop.Population_mergeSubPops(self, *args, **kwargs)
 
    def addIndFrom(self, *args, **kwargs):
        """
        Usage:
 
            x.addIndFrom(pop)
 
        Details:
 
            Add all individuals, including ancestors, in pop to the current
            population. Two populations should have the same genotypic
            structures and number of ancestral generations. Subpopulations in
            population pop are kept.
 
 
        """
        return _simuPOP_baop.Population_addIndFrom(self, *args, **kwargs)
 
    def addChromFrom(self, *args, **kwargs):
        """
        Usage:
 
            x.addChromFrom(pop)
 
        Details:
 
            Add chromosomes in population pop to the current population.
            population pop should have the same number of individuals as the
            current population in the current and all ancestral generations.
            This function merges genotypes on the new chromosomes from
            population pop individual by individual.
 
 
        """
        return _simuPOP_baop.Population_addChromFrom(self, *args, **kwargs)
 
    def addLociFrom(self, *args, **kwargs):
        """
        Usage:
 
            x.addLociFrom(pop)
 
        Details:
 
            Add loci from population pop, chromosome by chromosome. Added loci
            will be inserted according to their position. Their position and
            names should not overlap with any locus in the current population.
            population pop should have the same number of individuals as the
            current population in the current and all ancestral generations.
 
 
        """
        return _simuPOP_baop.Population_addLociFrom(self, *args, **kwargs)
 
    def addChrom(self, *args, **kwargs):
        """
        Usage:
 
            x.addChrom(lociPos, lociNames=[], chromName="", alleleNames=[],
              chromType=AUTOSOME)
 
        Details:
 
            Add chromosome chromName with given type chromType to a
            population, with loci lociNames inserted at position lociPos.
            lociPos should be ordered. lociNames and chromName should not
            exist in the current population. Allele names could be specified
            for all loci (a list of names) or differently for each locus (a
            nested list of names), using parameter alleleNames. Empty loci
            names will be used if lociNames is not specified.
 
 
        """
        return _simuPOP_baop.Population_addChrom(self, *args, **kwargs)
 
    def addLoci(self, *args, **kwargs):
        """
        Usage:
 
            x.addLoci(chrom, pos, lociNames=[], alleleNames=[])
 
        Details:
 
            Insert loci lociNames at positions pos on chromosome chrom. These
            parameters should be lists of the same length, although names may
            be ignored, in which case empty strings will be assumed. Single-
            value input is allowed for parameter chrom and pos if only one
            locus is added. Alleles at inserted loci are initialized with zero
            alleles. Note that loci have to be added to existing chromosomes.
            If loci on a new chromosome need to be added, function addChrom
            should be used. Optionally, allele names could be specified either
            for all loci (a single list) or each loci (a nested list). This
            function returns indexes of the inserted loci.
 
 
        """
        return _simuPOP_baop.Population_addLoci(self, *args, **kwargs)
 
    def resize(self, *args, **kwargs):
        """
        Usage:
 
            x.resize(sizes, propagate=False)
 
        Details:
 
            Resize population by giving new subpopulation sizes sizes.
            individuals at the end of some subpopulations will be removed if
            the new subpopulation size is smaller than the old one. New
            individuals will be appended to a subpopulation if the new size is
            larger. Their genotypes will be set to zero (default), or be
            copied from existing individuals if propagate is set to True. More
            specifically, if a subpopulation with 3 individuals is expanded to
            7, the added individuals will copy genotypes from individual 1, 2,
            3, and 1 respectively. Note that this function only resizes the
            current generation.
 
 
        """
        return _simuPOP_baop.Population_resize(self, *args, **kwargs)
 
    def extractSubPops(self, *args, **kwargs):
        """
        Usage:
 
            x.extractSubPops(subPops=ALL_AVAIL, rearrange=False)
 
        Details:
 
            Extract a list of (virtual) subpopulations from a population and
            create a new population. If rearrange is False (default),
            structure and names of extracted subpopulations are kept although
            extracted subpopulations can have fewer individuals if they are
            created from extracted virtual subpopulations. (e.g. it is
            possible to extract all male individuals from a subpopulation
            using a SexSplitter()). If rearrange is True, each (virtual)
            subpopulation in subPops becomes a new subpopulation in the
            extracted population in the order at which they are specified.
            Because each virtual subpopulation becomes a subpopulation, this
            function could be used, for example, to separate male and female
            individuals to two subpopulations ( subPops=[(0,0), (0,1)]). If
            overlapping (virtual) subpopulations are specified, individuals
            will be copied multiple times. This function only extract
            individuals from the present generation.
 
 
        """
        return _simuPOP_baop.Population_extractSubPops(self, *args, **kwargs)
 
    def extractIndividuals(self, *args, **kwargs):
        """
        Usage:
 
            x.extractIndividuals(indexes=[], IDs=[], idField="ind_id",
              filter=None)
 
        Details:
 
            Extract individuals with given absolute indexes (parameter
            indexes), IDs (parameter IDs, stored in information field idField,
            default to ind_id), or a filter function (parameter filter). If a
            list of absolute indexes are specified, the present generation
            will be extracted and form a one-generational population. If a
            list of IDs are specified, this function will look through all
            ancestral generations and extract individuals with given ID.
            Individuals with shared IDs are allowed. In the last case, a user-
            defined Python function should be provided. This function should
            accept parameter "ind" or one or more of the information fields.
            All individuals, including ancestors if there are multiple
            ancestral generations, will be passed to this function.
            Individuals that returns True will be extracted. Extracted
            individuals will be in their original ancestral generations and
            subpopulations, even if some subpopulations or generations are
            empty. An IndexError will be raised if an index is out of bound
            but no error will be given if an invalid ID is encountered.
 
 
        """
        return _simuPOP_baop.Population_extractIndividuals(self, *args, **kwargs)
 
    def removeLoci(self, *args, **kwargs):
        """
        Usage:
 
            x.removeLoci(loci=UNSPECIFIED, keep=UNSPECIFIED)
 
        Details:
 
            Remove loci (absolute indexes or names) and genotypes at these
            loci from the current population. Alternatively, a parameter keep
            can be used to specify loci that will not be removed.
 
 
        """
        return _simuPOP_baop.Population_removeLoci(self, *args, **kwargs)
 
    def recodeAlleles(self, *args, **kwargs):
        """
        Usage:
 
            x.recodeAlleles(alleles, loci=ALL_AVAIL, alleleNames=[])
 
        Details:
 
            Recode alleles at loci (can be a list of loci indexes or names, or
            all loci in a population (ALL_AVAIL)) to other values according to
            parameter alleles. This parameter can a list of new allele numbers
            for alleles 0, 1, 2, ... (allele x will be recoded to
            newAlleles[x], x outside of the range of newAlleles will not be
            recoded, although a warning will be given if DBG_WARNING is
            defined) or a Python function, which should accept one or both
            parameters allele (existing allele) and locus (index of locus).
            The return value will become the new allele. This function is
            intended to recode some alleles without listing all alleles in a
            list. It will be called once for each existing allele so it is not
            possible to recode an allele to different alleles. A new list of
            allele names could be specified for these loci. Different sets of
            names could be specified for each locus if a nested list of names
            are given. This function recode alleles for all subpopulations in
            all ancestral generations.
 
 
        """
        return _simuPOP_baop.Population_recodeAlleles(self, *args, **kwargs)
 
    def push(self, *args, **kwargs):
        """
        Usage:
 
            x.push(pop)
 
        Details:
 
            Push population pop into the current population. Both populations
            should have the same genotypic structure. The current population
            is discarded if ancestralDepth (maximum number of ancestral
            generations to hold) is zero so no ancestral generation can be
            kept. Otherise, the current population will become the parental
            generation of pop. If ancGen of a population is positive and there
            are already ancGen ancestral generations (c.f. ancestralGens()),
            the greatest ancestral generation will be discarded. In any case,
            Populationpop becomes invalid as all its individuals are absorbed
            by the current population.
 
 
        """
        return _simuPOP_baop.Population_push(self, *args, **kwargs)
 
    def curAncestralGen(self):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.Population_curAncestralGen(self)
 
    def ancestralGens(self):
        """
        Usage:
 
            x.ancestralGens()
 
        Details:
 
            Return the actual number of ancestral generations stored in a
            population, which does not necessarily equal to the number set by
            setAncestralDepth().
 
 
        """
        return _simuPOP_baop.Population_ancestralGens(self)
 
    def setIndInfo(self, *args, **kwargs):
        """
        Usage:
 
            x.setIndInfo(values, field, subPop=[])
 
        Details:
 
            Set information field field (specified by index or name) of all
            individuals (if subPop=[], default), or individuals in a (virtual)
            subpopulation (subPop=sp or (sp, vsp)) to values. values will be
            reused if its length is smaller than the size of the population or
            (virtual) subpopulation.
 
 
        """
        return _simuPOP_baop.Population_setIndInfo(self, *args, **kwargs)
 
    def indInfo(self, *args, **kwargs):
        """
        Usage:
 
            x.indInfo(field, subPop=[])
 
        Details:
 
            Return the values (as a list) of information field field (by index
            or name) of all individuals (if subPop=[], default), or
            individuals in a (virtual) subpopulation (if subPop=sp or (sp,
            vsp)).
 
 
        """
        return _simuPOP_baop.Population_indInfo(self, *args, **kwargs)
 
    def addInfoFields(self, *args, **kwargs):
        """
        Usage:
 
            x.addInfoFields(fields, init=0)
 
        Details:
 
            Add a list of information fields fields to a population and
            initialize their values to init. If an information field alreay
            exists, it will be re-initialized.
 
 
        """
        return _simuPOP_baop.Population_addInfoFields(self, *args, **kwargs)
 
    def setInfoFields(self, *args, **kwargs):
        """
        Usage:
 
            x.setInfoFields(fields, init=0)
 
        Details:
 
            Set information fields fields to a population and initialize them
            with value init. All existing information fields will be removed.
 
 
        """
        return _simuPOP_baop.Population_setInfoFields(self, *args, **kwargs)
 
    def removeInfoFields(self, *args, **kwargs):
        """
        Usage:
 
            x.removeInfoFields(fields)
 
        Details:
 
            Remove information fields fields from a population.
 
 
        """
        return _simuPOP_baop.Population_removeInfoFields(self, *args, **kwargs)
 
    def updateInfoFieldsFrom(self, *args, **kwargs):
        """
        Usage:
 
            x.updateInfoFieldsFrom(fields, pop, fromFields=[],
              ancGens=ALL_AVAIL)
 
        Details:
 
            Update information fields fields from fromFields of another
            population (or Pedigree) pop. Two populations should have the same
            number of individuals. If fromFields is not specified, it is
            assumed to be the same as fields. If ancGens is not ALL_AVAIL,
            only the specified ancestral generations are updated.
 
 
        """
        return _simuPOP_baop.Population_updateInfoFieldsFrom(self, *args, **kwargs)
 
    def setAncestralDepth(self, *args, **kwargs):
        """
        Usage:
 
            x.setAncestralDepth(depth)
 
        Details:
 
            set the intended ancestral depth of a population to depth, which
            can be 0 (does not store any ancestral generation), -1 (store all
            ancestral generations), and a positive number (store depth
            ancestral generations. If there exists more than depth ancestral
            generations (if depth > 0), extra ancestral generations are
            removed.
 
 
        """
        return _simuPOP_baop.Population_setAncestralDepth(self, *args, **kwargs)
 
    def useAncestralGen(self, *args, **kwargs):
        """
        Usage:
 
            x.useAncestralGen(idx)
 
        Details:
 
            Making ancestral generation idx (0 for current generation, 1 for
            parental generation, 2 for grand-parental generation, etc) the
            current generation. This is an efficient way to access Population
            properties of an ancestral generation. useAncestralGen(0) should
            always be called afterward to restore the correct order of
            ancestral generations.
 
 
        """
        return _simuPOP_baop.Population_useAncestralGen(self, *args, **kwargs)
 
    def save(self, *args, **kwargs):
        """
        Usage:
 
            x.save(filename)
 
        Details:
 
            Save population to a file filename, which can be loaded by a
            global function loadPopulation(filename).
 
 
        """
        return _simuPOP_baop.Population_save(self, *args, **kwargs)
 
    def vars(self, *args, **kwargs):
        """
        Usage:
 
            x.vars(subPop=[])
 
        Details:
 
            return variables of a population as a Python dictionary. If a
            valid subpopulation subPop is specified, a dictionary
            vars()["subPop"][subPop] is returned. A ValueError will be raised
            if key subPop does not exist in vars(), or if key subPop does not
            exist in vars()["subPop"].
 
 
        """
        return _simuPOP_baop.Population_vars(self, *args, **kwargs)
 
    def evaluate(self, *args, **kwargs):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.Population_evaluate(self, *args, **kwargs)
 
    def execute(self, *args, **kwargs):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.Population_execute(self, *args, **kwargs)
 
Population.clone = new_instancemethod(_simuPOP_baop.Population_clone,None,Population)
Population.swap = new_instancemethod(_simuPOP_baop.Population_swap,None,Population)
Population.setVirtualSplitter = new_instancemethod(_simuPOP_baop.Population_setVirtualSplitter,None,Population)
Population.numVirtualSubPop = new_instancemethod(_simuPOP_baop.Population_numVirtualSubPop,None,Population)
Population.activateVirtualSubPop = new_instancemethod(_simuPOP_baop.Population_activateVirtualSubPop,None,Population)
Population.deactivateVirtualSubPop = new_instancemethod(_simuPOP_baop.Population_deactivateVirtualSubPop,None,Population)
Population.__cmp__ = new_instancemethod(_simuPOP_baop.Population___cmp__,None,Population)
Population.fitGenoStru = new_instancemethod(_simuPOP_baop.Population_fitGenoStru,None,Population)
Population.setSubPopStru = new_instancemethod(_simuPOP_baop.Population_setSubPopStru,None,Population)
Population.numSubPop = new_instancemethod(_simuPOP_baop.Population_numSubPop,None,Population)
Population.subPopSize = new_instancemethod(_simuPOP_baop.Population_subPopSize,None,Population)
Population.subPopByName = new_instancemethod(_simuPOP_baop.Population_subPopByName,None,Population)
Population.subPopName = new_instancemethod(_simuPOP_baop.Population_subPopName,None,Population)
Population.subPopNames = new_instancemethod(_simuPOP_baop.Population_subPopNames,None,Population)
Population.setSubPopName = new_instancemethod(_simuPOP_baop.Population_setSubPopName,None,Population)
Population.subPopSizes = new_instancemethod(_simuPOP_baop.Population_subPopSizes,None,Population)
Population.popSize = new_instancemethod(_simuPOP_baop.Population_popSize,None,Population)
Population.absIndIndex = new_instancemethod(_simuPOP_baop.Population_absIndIndex,None,Population)
Population.subPopIndPair = new_instancemethod(_simuPOP_baop.Population_subPopIndPair,None,Population)
Population.subPopBegin = new_instancemethod(_simuPOP_baop.Population_subPopBegin,None,Population)
Population.subPopEnd = new_instancemethod(_simuPOP_baop.Population_subPopEnd,None,Population)
Population.individual = new_instancemethod(_simuPOP_baop.Population_individual,None,Population)
Population.indByID = new_instancemethod(_simuPOP_baop.Population_indByID,None,Population)
Population.ancestor = new_instancemethod(_simuPOP_baop.Population_ancestor,None,Population)
Population.individuals = new_instancemethod(_simuPOP_baop.Population_individuals,None,Population)
Population.indIterator = new_instancemethod(_simuPOP_baop.Population_indIterator,None,Population)
Population.rawIndBegin = new_instancemethod(_simuPOP_baop.Population_rawIndBegin,None,Population)
Population.rawIndEnd = new_instancemethod(_simuPOP_baop.Population_rawIndEnd,None,Population)
Population.indGenoBegin = new_instancemethod(_simuPOP_baop.Population_indGenoBegin,None,Population)
Population.indGenoEnd = new_instancemethod(_simuPOP_baop.Population_indGenoEnd,None,Population)
Population.genotype = new_instancemethod(_simuPOP_baop.Population_genotype,None,Population)
Population.setGenotype = new_instancemethod(_simuPOP_baop.Population_setGenotype,None,Population)
Population.sortIndividuals = new_instancemethod(_simuPOP_baop.Population_sortIndividuals,None,Population)
Population.setSubPopByIndInfo = new_instancemethod(_simuPOP_baop.Population_setSubPopByIndInfo,None,Population)
Population.splitSubPop = new_instancemethod(_simuPOP_baop.Population_splitSubPop,None,Population)
Population.removeSubPops = new_instancemethod(_simuPOP_baop.Population_removeSubPops,None,Population)
Population.removeIndividuals = new_instancemethod(_simuPOP_baop.Population_removeIndividuals,None,Population)
Population.mergeSubPops = new_instancemethod(_simuPOP_baop.Population_mergeSubPops,None,Population)
Population.addIndFrom = new_instancemethod(_simuPOP_baop.Population_addIndFrom,None,Population)
Population.addChromFrom = new_instancemethod(_simuPOP_baop.Population_addChromFrom,None,Population)
Population.addLociFrom = new_instancemethod(_simuPOP_baop.Population_addLociFrom,None,Population)
Population.addChrom = new_instancemethod(_simuPOP_baop.Population_addChrom,None,Population)
Population.addLoci = new_instancemethod(_simuPOP_baop.Population_addLoci,None,Population)
Population.resize = new_instancemethod(_simuPOP_baop.Population_resize,None,Population)
Population.extractSubPops = new_instancemethod(_simuPOP_baop.Population_extractSubPops,None,Population)
Population.extractIndividuals = new_instancemethod(_simuPOP_baop.Population_extractIndividuals,None,Population)
Population.removeLoci = new_instancemethod(_simuPOP_baop.Population_removeLoci,None,Population)
Population.recodeAlleles = new_instancemethod(_simuPOP_baop.Population_recodeAlleles,None,Population)
Population.push = new_instancemethod(_simuPOP_baop.Population_push,None,Population)
Population.curAncestralGen = new_instancemethod(_simuPOP_baop.Population_curAncestralGen,None,Population)
Population.ancestralGens = new_instancemethod(_simuPOP_baop.Population_ancestralGens,None,Population)
Population.setIndInfo = new_instancemethod(_simuPOP_baop.Population_setIndInfo,None,Population)
Population.infoBegin = new_instancemethod(_simuPOP_baop.Population_infoBegin,None,Population)
Population.infoEnd = new_instancemethod(_simuPOP_baop.Population_infoEnd,None,Population)
Population.indInfo = new_instancemethod(_simuPOP_baop.Population_indInfo,None,Population)
Population.addInfoFields = new_instancemethod(_simuPOP_baop.Population_addInfoFields,None,Population)
Population.setInfoFields = new_instancemethod(_simuPOP_baop.Population_setInfoFields,None,Population)
Population.removeInfoFields = new_instancemethod(_simuPOP_baop.Population_removeInfoFields,None,Population)
Population.updateInfoFieldsFrom = new_instancemethod(_simuPOP_baop.Population_updateInfoFieldsFrom,None,Population)
Population.setAncestralDepth = new_instancemethod(_simuPOP_baop.Population_setAncestralDepth,None,Population)
Population.useAncestralGen = new_instancemethod(_simuPOP_baop.Population_useAncestralGen,None,Population)
Population.save = new_instancemethod(_simuPOP_baop.Population_save,None,Population)
Population.vars = new_instancemethod(_simuPOP_baop.Population_vars,None,Population)
Population.evaluate = new_instancemethod(_simuPOP_baop.Population_evaluate,None,Population)
Population.execute = new_instancemethod(_simuPOP_baop.Population_execute,None,Population)
Population_swigregister = _simuPOP_baop.Population_swigregister
Population_swigregister(Population)
HAPLODIPLOID = _simuPOP_baop.HAPLODIPLOID
 
 
def loadPopulation(*args, **kwargs):
  """
    Usage:
 
        loadPopulation(file)
 
    Details:
 
        load a population from a file saved by Population::save().
 
 
    """
  return _simuPOP_baop.loadPopulation(*args, **kwargs)
class BaseOperator(object):
    """
    Details:
 
        Operators are objects that act on populations. They can be applied
        to populations directly using their function forms, but they are
        usually managed and applied by a simulator. In the latter case,
        operators are passed to the evolve function of a simulator, and
        are applied repeatedly during the evolution of the simulator.  The
        BaseOperator class is the base class for all operators. It defines
        a common user interface that specifies at which generations, at
        which stage of a life cycle, to which populations and
        subpopulations an operator is applied. These are achieved by a
        common set of parameters such as begin, end, step, at, stage for
        all operators. Note that a specific operator does not have to
        honor all these parameters. For example, a Recombinator can only
        be applied during mating so it ignores the stage parameter.  An
        operator can be applied to all or part of the generations during
        the evolution of a simulator. At the beginning of an evolution, a
        simulator is usually at the beginning of generation 0. If it
        evolves 10 generations, it evolves generations 0, 1, ,,,., and 9
        (10 generations) and stops at the begging of generation 10. A
        negative generation number a has generation number 10 + a, with -1
        referring to the last evolved generation 9. Note that the starting
        generation number of a simulator can be changed by its setGen()
        member function.  Output from an operator is usually directed to
        the standard output (sys.stdout). This can be configured using a
        output specification string, which can be '' for no output, '>'
        standard terminal output (default), a filename prefixed by one or
        more '>' characters or a Python expression indicated by a leading
        exclamation mark ('!expr'). In the case of '>filename' (or
        equivalently 'filename'), the output from an operator is written
        to this file. However, if two operators write to the same file
        filename, or if an operator writes to this file more than once,
        only the last write operation will succeed. In the case of
        '>>filename', file filename will be opened at the beginning of the
        evolution and closed at the end. Outputs from multiple operators
        are appended. >>>filename works similar to >>filename but
        filename, if it already exists at the beginning of an evolutionary
        process, will not be cleared. If the output specification is
        prefixed by an exclamation mark, the string after the mark is
        considered as a Python expression. When an operator is applied to
        a population, this expression will be evaluated within the
        population's local namespace to obtain a population specific
        output specification. As an advanced feature, a Python function
        can be assigned to this parameter. Output strings will be sent to
        this function for processing.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            BaseOperator(output, begin, end, step, at, reps, subPops,
              infoFields)
 
        Details:
 
            The following parameters can be specified by all operators.
            However, an operator can ignore some parameters and the exact
            meaning of a parameter can vary.
 
        Arguments:
 
            output:         A string that specifies how output from an
                            operator is written, which can be '' (no output),
                            '>' (standard output), 'filename' prefixed by one
                            or more '>', or an Python expression prefixed by
                            an exclamation mark ('!expr'). Alternatively, a
                            Python function can be given to handle outputs.
            begin:          The starting generation at which an operator will
                            be applied. Default to 0. A negative number is
                            interpreted as a generation counted from the end
                            of an evolution (-1 being the last evolved
                            generation).
            end:            The last generation at which an operator will be
                            applied. Default to -1, namely the last
                            generation.
            step:           The number of generations between applicable
                            generations. Default to 1.
            at:             A list of applicable generations. Parameters
                            begin, end, and step will be ignored if this
                            parameter is specified. A single generation number
                            is also acceptable.
            reps:           A list of applicable replicates. A common default
                            value ALL_AVAIL is interpreted as all replicates
                            in a simulator. Negative indexes such as -1 (last
                            replicate) is acceptable. rep=idx can be used as a
                            shortcut for rep=[idx].
            subPops:        A list of applicable (virtual) subpopulations,
                            such as subPops=[sp1, sp2, (sp2, vsp1)].
                            subPops=[sp1] can be simplied as subPops=sp1.
                            Negative indexes are not supported. A common
                            default value (ALL_AVAIL) of this parameter
                            reprents all subpopulations of the population
                            being aplied. Suport for this parameter vary from
                            operator to operator and some operators do not
                            support virtual subpopulations at all. Please
                            refer to the reference manual of individual
                            operators for their support for this parameter.
            infoFields:     A list of information fields that will be used by
                            an operator. You usually do not need to specify
                            this parameter because operators that use
                            information fields usually have default values for
                            this parameter.
 
 
        """
        _simuPOP_baop.BaseOperator_swiginit(self,_simuPOP_baop.new_BaseOperator(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_BaseOperator
    def clone(self):
        """
        Usage:
 
            x.clone()
 
        Details:
 
            Return a cloned copy of an operator. This function is available to
            all operators.
 
 
        """
        return _simuPOP_baop.BaseOperator_clone(self)
 
    def apply(self, *args, **kwargs):
        """
        Usage:
 
            x.apply(pop)
 
        Details:
 
            Apply an operator to population pop directly, without checking its
            applicability.
 
 
        """
        return _simuPOP_baop.BaseOperator_apply(self, *args, **kwargs)
 
    def describe(self, format = True):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.BaseOperator_describe(self, format)
 
BaseOperator.clone = new_instancemethod(_simuPOP_baop.BaseOperator_clone,None,BaseOperator)
BaseOperator.apply = new_instancemethod(_simuPOP_baop.BaseOperator_apply,None,BaseOperator)
BaseOperator.describe = new_instancemethod(_simuPOP_baop.BaseOperator_describe,None,BaseOperator)
BaseOperator_swigregister = _simuPOP_baop.BaseOperator_swigregister
BaseOperator_swigregister(BaseOperator)
 
class opList(object):
    """
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        Usage:
 
            opList(ops=[])
 
 
        """
        _simuPOP_baop.opList_swiginit(self,_simuPOP_baop.new_opList(*args))
    __swig_destroy__ = _simuPOP_baop.delete_opList
opList_swigregister = _simuPOP_baop.opList_swigregister
opList_swigregister(opList)
 
class Pause(BaseOperator):
    """
    Details:
 
        This operator pauses the evolution of a simulator at given
        generations or at a key stroke. When a simulator is stopped, you
        can go to a Python shell to examine the status of an evolutionary
        process, resume or stop the evolution.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            Pause(stopOnKeyStroke=False, prompt=True, output=">", begin=0,
              end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL,
              infoFields=[])
 
        Details:
 
            Create an operator that pause the evolution of a population when
            it is applied to this population. If stopOnKeyStroke is False
            (default), it will always pause a population when it is applied,
            if this parameter is set to True, the operator will pause a
            population if *any* key has been pressed. If a specific character
            is set, the operator will stop when this key has been pressed.
            This allows, for example, the use of several pause operators to
            pause different populations.  After a population has been paused,
            a message will be displayed (unless prompt is set to False) and
            tells you how to proceed. You can press 's' to stop the evolution
            of this population, 'S' to stop the evolution of all populations,
            or 'p' to enter a Python shell. The current population will be
            available in this Python shell as "pop_X_Y" when X is generation
            number and Y is replicate number. The evolution will continue
            after you exit this interactive Python shell.
 
        Note:
 
            Ctrl-C will be intercepted even if a specific character is
            specified in parameter stopOnKeyStroke.
 
 
        """
        _simuPOP_baop.Pause_swiginit(self,_simuPOP_baop.new_Pause(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_Pause
Pause_swigregister = _simuPOP_baop.Pause_swigregister
Pause_swigregister(Pause)
 
class NoneOp(BaseOperator):
    """
    Details:
 
        This operator does nothing when it is applied to a population. It
        is usually used as a placeholder when an operator is needed
        syntactically.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            NoneOp(output=">", begin=0, end=0, step=1, at=[],
              reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a NoneOp.
 
 
        """
        _simuPOP_baop.NoneOp_swiginit(self,_simuPOP_baop.new_NoneOp(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_NoneOp
NoneOp_swigregister = _simuPOP_baop.NoneOp_swigregister
NoneOp_swigregister(NoneOp)
 
class IfElse(BaseOperator):
    """
    Details:
 
        This operator uses a condition, which can be a fixed condition, an
        expression or a user-defined function, to determine which
        operators to be applied when this operator is applied. A list of
        if-operators will be applied when the condition is True. Otherwise
        a list of else-operators will be applied.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            IfElse(cond, ifOps=[], elseOps=[], output=">", begin=0, end=-1,
              step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a conditional operator that will apply operators ifOps if
            condition cond is met and elseOps otherwise. If a Python
            expression (a string) is given to parameter cond, the expression
            will be evalulated in each population's local namespace when this
            operator is applied. When a Python function is specified, it
            accepts parameter pop when it is applied to a population, and one
            or more parameters pop, off, dad or mom when it is applied during
            mating. The return value of this function should be True or False.
            Otherwise, parameter cond will be treated as a fixed condition
            (converted to True or False) upon which one set of operators is
            always applied. The applicability of ifOps and elseOps are
            controlled by parameters begin, end, step, at and rep of both the
            IfElse operator and individual operators but ifOps and elseOps
            opeartors does not support negative indexes for replicate and
            generation numbers.
 
 
        """
        _simuPOP_baop.IfElse_swiginit(self,_simuPOP_baop.new_IfElse(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_IfElse
IfElse_swigregister = _simuPOP_baop.IfElse_swigregister
IfElse_swigregister(IfElse)
 
class TerminateIf(BaseOperator):
    """
    Details:
 
        This operator evaluates an expression in a population's local
        namespace and terminate the evolution of this population, or the
        whole simulator, if the return value of this expression is True.
        Termination caused by an operator will stop the execution of all
        operators after it. The generation at which the population is
        terminated will be counted in the evolved generations (return
        value from Simulator::evolve) if termination happens after mating.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            TerminateIf(condition="", stopAll=False, message="", output="",
              begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
              subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a terminator with an expression condition, which will be
            evalulated in a population's local namespace when the operator is
            applied to this population. If the return value of condition is
            True, the evolution of the population will be terminated. If
            stopAll is set to True, the evolution of all replicates of the
            simulator will be terminated. If this operator is allowed to write
            to an output (default to ""), the generation number, proceeded
            with an optional message.
 
 
        """
        _simuPOP_baop.TerminateIf_swiginit(self,_simuPOP_baop.new_TerminateIf(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_TerminateIf
TerminateIf_swigregister = _simuPOP_baop.TerminateIf_swigregister
TerminateIf_swigregister(TerminateIf)
 
class DiscardIf(BaseOperator):
    """
    Details:
 
        This operator discards individuals according to either an
        expression that evaluates according to individual information
        field, or a Python function that accepts individual and its
        information fields.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            DiscardIf(cond, exposeInd="", output="", begin=0, end=-1,
              step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create an operator that discard individuals according to an
            expression or the return value of a Python function (parameter
            cond). This operator can be applied to a population before or
            after mating, or to offspring during mating. If an expression is
            passed to cond, it will be evalulated with each individual's
            information fields (see operator InfoEval for details). If
            exposeInd is non-empty, individuals will be available for
            evaluation in the expression as an variable with name spacied by
            exposeInd. If the expression is evaluated to be True, individuals
            (if applied before or after mating) or offspring (if applied
            during mating) will be removed or discard. If a function is passed
            to cond, it should accept paramters ind and pop or names of
            information fields when it is applied to a population (pre or post
            mating), or parameters off, dad, mom, pop (parental population),
            or names of information fields if the operator is applied during
            mating. Individuals will be discarded if this function returns
            True. A constant expression (e.g. True) is also acceptable).
            Because this operator supports parameter subPops, only individuals
            belonging to specified (virtual) subpopulations will be screened.
 
 
        """
        _simuPOP_baop.DiscardIf_swiginit(self,_simuPOP_baop.new_DiscardIf(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_DiscardIf
DiscardIf_swigregister = _simuPOP_baop.DiscardIf_swigregister
DiscardIf_swigregister(DiscardIf)
 
class TicToc(BaseOperator):
    """
    Details:
 
        This operator, when called, output the difference between current
        and the last called clock time. This can be used to estimate
        execution time of each generation. Similar information can also be
        obtained from turnOnDebug("DBG_PROFILE"), but this operator has
        the advantage of measuring the duration between several
        generations by setting step parameter. As an advanced feature that
        mainly used for performance testing, this operator accepts a
        parameter stopAfter (seconds), and will stop the evolution of a
        population if the overall time exceeds stopAfter. Note that
        elapsed time is only checked when this operator is applied to a
        population so it might not be able to stop the evolution process
        right after stopAfter seconds. This operator can also be applied
        during mating. Note that to avoid excessive time checking, this
        operator does not always check system time accurately.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            TicToc(output=">", stopAfter=0, begin=0, end=-1, step=1, at=[],
              reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a TicToc operator that outputs the elapsed since the last
            time it was applied, and the overall time since the first time
            this operator is applied.
 
 
        """
        _simuPOP_baop.TicToc_swiginit(self,_simuPOP_baop.new_TicToc(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_TicToc
TicToc_swigregister = _simuPOP_baop.TicToc_swigregister
TicToc_swigregister(TicToc)
 
class PyOperator(BaseOperator):
    """
    Details:
 
        An operator that calls a user-defined function when it is applied
        to a population (pre- or post-mating) or offsprings (during-
        mating). The function can have have parameters pop when the
        operator is applied pre- or post-mating, pop, off, dad, mom when
        the operator is applied during-mating. An optional parameter can
        be passed if parameter param is given. In the during-mating case,
        parameters pop, dad and mom can be ignored if offspringOnly is set
        to True.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            PyOperator(func, param=None, begin=0, end=-1, step=1, at=[],
              reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a pure-Python operator that calls a user-defined function
            when it is applied. If this operator is applied before or after
            mating, your function should have form func(pop) or func(pop,
            param) where pop is the population to which the operator is
            applied, param is the value specified in parameter param. param
            will be ignored if your function only accepts one parameter.
            Althernatively, the function should have form func(ind) with
            optional parameters pop and param. In this case, the function will
            be called for all individuals, or individuals in subpopulations
            subPops. Individuals for which the function returns False will be
            removed from the population. This operator can therefore perform
            similar functions as operator DiscardIf.  If this operator is
            applied during mating, your function should accept parameters pop,
            off (or ind), dad, mom and param where pop is the parental
            population, and off or ind, dad, and mom are offspring and their
            parents for each mating event, and param is an optional parameter.
            If subPops are provided, only offspring in specified (virtual)
            subpopulations are acceptable.  This operator does not support
            parameters output, and infoFields. If certain output is needed, it
            should be handled in the user defined function func. Because the
            status of files used by other operators through parameter output
            is undetermined during evolution, they should not be open or
            closed in this Python operator.
 
 
        """
        _simuPOP_baop.PyOperator_swiginit(self,_simuPOP_baop.new_PyOperator(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_PyOperator
PyOperator_swigregister = _simuPOP_baop.PyOperator_swigregister
PyOperator_swigregister(PyOperator)
 
 
def applyDuringMatingOperator(*args, **kwargs):
  """Obsolete or undocumented function."""
  return _simuPOP_baop.applyDuringMatingOperator(*args, **kwargs)
class OffspringGenerator(object):
    """
    Details:
 
        An offspring generator generates offspring from parents chosen by
        a parent chooser. It is responsible for creating a certain number
        of offspring, determinning their sex, and transmitting genotypes
        from parents to offspring.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            OffspringGenerator(ops, numOffspring=1, sexMode=RANDOM_SEX)
 
        Details:
 
            Create a basic offspring generator. This offspring generator uses
            ops genotype transmitters to transmit genotypes from parents to
            offspring.  A number of during-mating operators (parameter ops)
            can be used to, among other possible duties such as setting
            information fields of offspring, transmit genotype from parents to
            offspring. This general offspring generator does not have any
            default during-mating operator but all stock mating schemes use an
            offspring generator with a default operator. For example, a
            mendelianOffspringGenerator is used by RandomMating to trasmit
            genotypes. Note that applicability parameters begin, step, end, at
            and reps could be used in these operators but negative population
            and generation indexes are unsupported.  Parameter numOffspring is
            used to control the number of offspring per mating event, or in
            another word the number of offspring in each family. It can be a
            number, a Python function or generator, or a mode parameter
            followed by some optional arguments. If a number is given, given
            number of offspring will be generated at each mating event. If a
            Python function is given, it will be called each time when a
            mating event happens. When a generator function is specified, it
            will be called for each subpopulation to provide number of
            offspring for all mating events during the populating of this
            subpopulation. Current generation number will be passed to this
            function or generator function if parameter "gen" is used in this
            function. In the last case, a tuple (or a list) in one of the
            following forms can be given:
            *   (GEOMETRIC_DISTRIBUTION, p)
            *   (POISSON_DISTRIBUTION, p), p > 0
            *   (BINOMIAL_DISTRIBUTION, p, N), 0 < p <=1, N > 0
            *   (UNIFORM_DISTRIBUTION, a, b), 0 <= a <= b. In this case, the
            number of offspring will be determined randomly following the
            specified statistical distributions. Because families with zero
            offspring are silently ignored, the distribution of the observed
            number of offspring per mating event (excluding zero) follows
            zero-truncated versions of these distributions.  Parameter
            numOffspring specifies the number of offspring per mating event
            but the actual surviving offspring can be less than specified.
            More spefically, if any during-mating operator returns False, an
            offspring will be discarded so the actually number of offspring of
            a mating event will be reduced. This is essentially how during-
            mating selector works.  Parameter sexMode is used to control the
            sex of each offspring. Its default value is usually RANDOM_SEX
            which assign MALE or FEMALE to each individual randomly, with
            equal probabilities. If NO_SEX is given, offspring sex will not be
            changed. sexMode can also be one of
            *   (PROB_OF_MALES, p) where p is the probability of male for each
            offspring,
            *   (NUM_OF_MALES, n) where n is the number of males in a mating
            event. If n is greater than or equal to the number of offspring in
            this family, all offspring in this family will be MALE.
            *   (NUM_OF_FEMALES, n) where n is the number of females in a
            mating event,
            *   (SEQUENCE_OF_SEX, s1, s2 ...) where s1, s2 etc are MALE or
            FEMALE. The sequence will be used for each mating event. It will
            be reused if the number of offspring in a mating event is greater
            than the length of sequence.
            *   (GLOBAL_SEQUENCE_OF_SEX, s1, s2, ...) where s1, s2 etc are
            MALE or FEMALE. The sequence will be used across mating events. It
            will be reused if the number of offspring in a subpopulation is
            greater than the length of sequence. Finally, parameter sexMode
            accepts a function or a generator function. A function will be
            called whenever an offspring is produced. A generator will be
            created at each subpopulation and will be used to produce sex for
            all offspring in this subpopulation. No parameter is accepted.
 
 
        """
        _simuPOP_baop.OffspringGenerator_swiginit(self,_simuPOP_baop.new_OffspringGenerator(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_OffspringGenerator
    def clone(self):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.OffspringGenerator_clone(self)
 
    def describe(self, format = True):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.OffspringGenerator_describe(self, format)
 
OffspringGenerator.clone = new_instancemethod(_simuPOP_baop.OffspringGenerator_clone,None,OffspringGenerator)
OffspringGenerator.describe = new_instancemethod(_simuPOP_baop.OffspringGenerator_describe,None,OffspringGenerator)
OffspringGenerator_swigregister = _simuPOP_baop.OffspringGenerator_swigregister
OffspringGenerator_swigregister(OffspringGenerator)
 
class ControlledOffspringGenerator(OffspringGenerator):
    """
    Details:
 
        This offspring generator populates an offspring population and
        controls allele frequencies at specified loci. At each generation,
        expected allele frequencies at these loci are passed from a user
        defined allele frequency trajectory function. The offspring
        population is populated in two steps. At the first step, only
        families with disease alleles are accepted until until the
        expected number of disease alleles are met. At the second step,
        only families with wide type alleles are accepted to populate the
        rest of the offspring generation. This method is described in
        detail in "Peng et al, (2007) PLoS Genetics".
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            ControlledOffspringGenerator(loci, alleles, freqFunc, ops=[],
              numOffspring=1, sexMode=RANDOM_SEX)
 
        Details:
 
            Create an offspring generator that selects offspring so that
            allele frequency at specified loci in the offspring generation
            reaches specified allele frequency. At the beginning of each
            generation, expected allele frequency of alleles at loci is
            returned from a user-defined trajectory function freqFunc.
            Parameter loci can be a list of loci indexes, names, or ALL_AVAIL.
            If there is no subpopulation, this function should return a list
            of frequencies for each locus. If there are multiple
            subpopulations, freqFunc can return a list of allele frequencies
            for all subpopulations or combined frequencies that ignore
            population structure. In the former case, allele frequencies
            should be arranged by loc0_sp0, loc1_sp0, ... loc0_sp1, loc1_sp1,
            ..., and so on. In the latter case, overall expected number of
            alleles are scattered to each subpopulation in proportion to
            existing number of alleles in each subpopulation, using a
            multinomial distribution.  After the expected alleles are
            calculated, this offspring generator accept and reject families
            according to their genotype at loci until allele frequecies reach
            their expected values. The rest of the offspring generation is
            then filled with families without only wild type alleles at these
            loci.  This offspring generator is derived from class
            OffspringGenerator. Please refer to class OffspringGenerator for a
            detailed description of parameters ops, numOffspring and sexMode.
 
 
        """
        _simuPOP_baop.ControlledOffspringGenerator_swiginit(self,_simuPOP_baop.new_ControlledOffspringGenerator(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_ControlledOffspringGenerator
ControlledOffspringGenerator_swigregister = _simuPOP_baop.ControlledOffspringGenerator_swigregister
ControlledOffspringGenerator_swigregister(ControlledOffspringGenerator)
 
class ParentChooser(object):
    """
    Details:
 
        A parent chooser repeatedly chooses parent(s) from a parental
        population and pass them to an offspring generator. A parent
        chooser can select one or two parents, which should be matched by
        the offspring generator. This class is the base class of all
        parent choosers, and should not be used directly.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            ParentChooser(selectionField="")
 
 
        """
        _simuPOP_baop.ParentChooser_swiginit(self,_simuPOP_baop.new_ParentChooser(*args, **kwargs))
    def clone(self):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.ParentChooser_clone(self)
 
    def describe(self, format = True):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.ParentChooser_describe(self, format)
 
    __swig_destroy__ = _simuPOP_baop.delete_ParentChooser
ParentChooser.clone = new_instancemethod(_simuPOP_baop.ParentChooser_clone,None,ParentChooser)
ParentChooser.describe = new_instancemethod(_simuPOP_baop.ParentChooser_describe,None,ParentChooser)
ParentChooser_swigregister = _simuPOP_baop.ParentChooser_swigregister
ParentChooser_swigregister(ParentChooser)
 
class SequentialParentChooser(ParentChooser):
    """
    Details:
 
        This parent chooser chooses a parent from a parental (virtual)
        subpopulation sequentially. Natural selection is not considered.
        If the last parent is reached, this parent chooser will restart
        from the beginning of the (virtual) subpopulation.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            SequentialParentChooser(sexChoice=ANY_SEX)
 
        Details:
 
            Create a parent chooser that chooses a parent from a parental
            (virtual) subpopulation sequentially. Parameter choice can be
            ANY_SEX (default), MALE_ONLY and FEMALE_ONLY. In the latter two
            cases, only male or female individuals are selected. A
            RuntimeError will be raised if there is no male or female
            individual from the population.
 
 
        """
        _simuPOP_baop.SequentialParentChooser_swiginit(self,_simuPOP_baop.new_SequentialParentChooser(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_SequentialParentChooser
SequentialParentChooser_swigregister = _simuPOP_baop.SequentialParentChooser_swigregister
SequentialParentChooser_swigregister(SequentialParentChooser)
 
class RandomParentChooser(ParentChooser):
    """
    Details:
 
        This parent chooser chooses a parent randomly from a (virtual)
        parental subpopulation. Parents are chosen with or without
        replacement. If parents are chosen with replacement, a parent can
        be selected multiple times. If individual fitness values are
        assigned to individuals ( stored in an information field
        selectionField (default to "fitness"), individuals will be chosen
        at a probability proportional to his or her fitness value. If
        parents are chosen without replacement, a parent can be chosen
        only once. An RuntimeError will be raised if all parents are
        exhausted. Natural selection is disabled in the without-
        replacement case.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            RandomParentChooser(replacement=True, selectionField="fitness",
              sexChoice=ANY_SEX)
 
        Details:
 
            Create a random parent chooser that choose parents with or without
            replacement (parameter replacement, default to True). If selection
            is enabled and information field selectionField exists in the
            passed population, the probability that a parent is chosen is
            proportional to his/her fitness value stored in selectionField.
            This parent chooser by default chooses parent from all individuals
            (ANY_SEX), but it can be made to select only male (MALE_ONLY) or
            female (FEMALE_ONLY) individuals by setting parameter sexChoice.
 
 
        """
        _simuPOP_baop.RandomParentChooser_swiginit(self,_simuPOP_baop.new_RandomParentChooser(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_RandomParentChooser
RandomParentChooser_swigregister = _simuPOP_baop.RandomParentChooser_swigregister
RandomParentChooser_swigregister(RandomParentChooser)
 
class RandomParentsChooser(ParentChooser):
    """
    Details:
 
        This parent chooser chooses two parents, a male and a female,
        randomly from a (virtual) parental subpopulation. Parents are
        chosen with or without replacement from their respective sex
        group. If parents are chosen with replacement, a parent can be
        selected multiple times. If individual fitness values are assigned
        (stored in information field selectionField, default to "fitness",
        the probability that an individual is chosen is proportional to
        his/her fitness value among all individuals with the same sex. If
        parents are chosen without replacement, a parent can be chosen
        only once. An RuntimeError will be raised if all males or females
        are exhausted. Natural selection is disabled in the without-
        replacement case.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, replacement = True, selectionField = "fitness"): 
        """
        Usage:
 
            RandomParentsChooser(replacement=True, selectionField="fitness")
 
        Details:
 
            Create a random parents chooser that choose two parents with or
            without replacement (parameter replacement, default to True). If
            selection is enabled and information field selectionField exists
            in the passed population, the probability that a parent is chosen
            is proportional to his/her fitness value stored in selectionField.
 
 
        """
        _simuPOP_baop.RandomParentsChooser_swiginit(self,_simuPOP_baop.new_RandomParentsChooser(replacement, selectionField))
    __swig_destroy__ = _simuPOP_baop.delete_RandomParentsChooser
RandomParentsChooser_swigregister = _simuPOP_baop.RandomParentsChooser_swigregister
RandomParentsChooser_swigregister(RandomParentsChooser)
 
class PolyParentsChooser(ParentChooser):
    """
    Details:
 
        This parent chooser is similar to random parents chooser but
        instead of selecting a new pair of parents each time, one of the
        parents in this parent chooser will mate with several spouses
        before he/she is replaced. This mimicks multi-spouse mating
        schemes such as polygyny or polyandry in some populations. Natural
        selection is supported for both sexes.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            PolyParentsChooser(polySex=MALE, polyNum=1,
              selectionField="fitness")
 
        Details:
 
            Create a multi-spouse parents chooser where each father (if
            polySex is MALE) or mother (if polySex is FEMALE) has polyNum
            spouses. The parents are chosen with replacement. If individual
            fitness values are assigned (stored to information field
            selectionField, default to "fitness"), the probability that an
            individual is chosen is proportional to his/her fitness value
            among all individuals with the same sex.
 
 
        """
        _simuPOP_baop.PolyParentsChooser_swiginit(self,_simuPOP_baop.new_PolyParentsChooser(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_PolyParentsChooser
PolyParentsChooser_swigregister = _simuPOP_baop.PolyParentsChooser_swigregister
PolyParentsChooser_swigregister(PolyParentsChooser)
 
class CombinedParentsChooser(ParentChooser):
    """
    Details:
 
        This parent chooser accepts two parent choosers. It takes one
        parent from each parent chooser and return them as father and
        mother. Because two parent choosers do not have to choose parents
        from the same virtual subpopulation, this parent chooser allows
        you to choose parents from different subpopulations.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            CombinedParentsChooser(fatherChooser, motherChooser)
 
        Details:
 
            Create a Python parent chooser using two parent choosers
            fatherChooser and motherChooser. It takes one parent from each
            parent chooser and return them as father and mother. If two valid
            parents are returned, the first valid parent (father) will be used
            for fatherChooser, the second valid parent (mother) will be used
            for motherChooser. Although these two parent choosers are supposed
            to return a father and a mother respectively, the sex of returned
            parents are not checked so it is possible to return parents with
            the same sex using this parents chooser.
 
 
        """
        _simuPOP_baop.CombinedParentsChooser_swiginit(self,_simuPOP_baop.new_CombinedParentsChooser(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_CombinedParentsChooser
CombinedParentsChooser_swigregister = _simuPOP_baop.CombinedParentsChooser_swigregister
CombinedParentsChooser_swigregister(CombinedParentsChooser)
 
class PyParentsChooser(ParentChooser):
    """
    Details:
 
        This parent chooser accepts a Python generator function that
        repeatedly yields one or two parents, which can be references to
        individual objects or indexes relative to each subpopulation. The
        parent chooser calls the generator function with parental
        population and a subpopulation index for each subpopulation and
        retrieves parents repeatedly using the iterator interface of the
        generator function.  This parent chooser does not support virtual
        subpopulation directly. However, because virtual subpopulations
        are defined in the passed parental population, it is easy to
        return parents from a particular virtual subpopulation using
        virtual subpopulation related functions.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            PyParentsChooser(generator)
 
        Details:
 
            Create a Python parent chooser using a Python generator function
            parentsGenerator. This function should accept one or both of
            parameters pop (the parental population) and subPop (index of
            subpopulation) and return the reference or index (relative to
            subpopulation) of a parent or a pair of parents repeatedly using
            the iterator interface of the generator function.
 
 
        """
        _simuPOP_baop.PyParentsChooser_swiginit(self,_simuPOP_baop.new_PyParentsChooser(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_PyParentsChooser
PyParentsChooser_swigregister = _simuPOP_baop.PyParentsChooser_swigregister
PyParentsChooser_swigregister(PyParentsChooser)
 
class MatingScheme(object):
    """
    Details:
 
        This mating scheme is the base class of all mating schemes. It
        evolves a population generation by generation but does not
        actually transmit genotype.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            MatingScheme(subPopSize=[])
 
        Details:
 
            Create a base mating scheme that evolves a population without
            transmitting genotypes. At each generation, this mating scheme
            creates an offspring generation according to parameter subPopSize,
            which can be a list of subpopulation sizes (or a number if there
            is only one subpopulation) or a Python function which will be
            called at each generation, just before mating, to determine the
            subpopulation sizes of the offspring generation. The function
            should be defined with one or both parameters of gen and pop where
            gen is the current generation number and pop is the parental
            population just before mating. The return value of this function
            should be a list of subpopulation sizes for the offspring
            generation. A single number can be returned if there is only one
            subpopulation. The passed parental population is usually used to
            determine offspring population size from parental population size
            but you can also modify this population to prepare for mating. A
            common practice is to split and merge parental populations in this
            function so that you demographic related information and actions
            could be implemented in the same function.
 
 
        """
        _simuPOP_baop.MatingScheme_swiginit(self,_simuPOP_baop.new_MatingScheme(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_MatingScheme
    def clone(self):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.MatingScheme_clone(self)
 
    def describe(self, format = True):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.MatingScheme_describe(self, format)
 
MatingScheme.clone = new_instancemethod(_simuPOP_baop.MatingScheme_clone,None,MatingScheme)
MatingScheme.describe = new_instancemethod(_simuPOP_baop.MatingScheme_describe,None,MatingScheme)
MatingScheme_swigregister = _simuPOP_baop.MatingScheme_swigregister
MatingScheme_swigregister(MatingScheme)
 
class HomoMating(MatingScheme):
    """
    Details:
 
        A homogeneous mating scheme that uses a parent chooser to choose
        parents from a prental generation, and an offspring generator to
        generate offspring from chosen parents. It can be either used
        directly, or within a heterogeneous mating scheme. In the latter
        case, it can be applied to a (virtual) subpopulation.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            HomoMating(chooser, generator, subPopSize=[], subPops=ALL_AVAIL,
              weight=0)
 
        Details:
 
            Create a homogeneous mating scheme using a parent chooser chooser
            and an offspring generator generator.  If this mating scheme is
            used directly in a simulator, it will be responsible for creating
            an offspring population according to parameter subPopSize. This
            parameter can be a list of subpopulation sizes (or a number if
            there is only one subpopulation) or a Python function which will
            be called at each generation to determine the subpopulation sizes
            of the offspring generation. Please refer to class MatingScheme
            for details about this parameter.  If this mating shcme is used
            within a heterogeneous mating scheme. Parameters subPops and
            weight are used to determine which (virtual) subpopulations this
            mating scheme will be applied to, and how many offspring this
            mating scheme will produce. Please refer to mating scheme
            HeteroMating for the use of these two parameters.
 
 
        """
        _simuPOP_baop.HomoMating_swiginit(self,_simuPOP_baop.new_HomoMating(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_HomoMating
HomoMating_swigregister = _simuPOP_baop.HomoMating_swigregister
HomoMating_swigregister(HomoMating)
 
class PedigreeMating(MatingScheme):
    """
    Details:
 
        This mating scheme evolves a population following an existing
        pedigree structure. If the Pedigree object has N ancestral
        generations and a present generation, it can be used to evolve a
        population for N generations, starting from the topmost ancestral
        generation. At the k-th generation, this mating scheme produces an
        offspring generation according to subpopulation structure of the
        N-k-1 ancestral generation in the pedigree object (e.g. producing
        the offspring population of generation 0 according to the N-1
        ancestral generation of the pedigree object ). For each offspring,
        this mating scheme copies individual ID and sex from the
        corresponing individual in the pedigree object. It then locates
        the parents of each offspring using their IDs in the pedigree
        object. A list of during mating operators are then used to
        transmit parental genotype to the offspring. The population being
        evolved must have an information field 'ind_id'.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            PedigreeMating(ped, ops, idField="ind_id")
 
        Details:
 
            Creates a pedigree mating scheme that evolves a population
            according to Pedigree object ped. The evolved population should
            contain individuals with ID (at information field idField, default
            to 'ind_id') that match those individual in the topmost ancestral
            generation who have offspring. After parents of each individuals
            are determined from their IDs, a list of during-mating operators
            ops are applied to transmit genotypes. The return value of these
            operators are not checked.
 
 
        """
        _simuPOP_baop.PedigreeMating_swiginit(self,_simuPOP_baop.new_PedigreeMating(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_PedigreeMating
PedigreeMating_swigregister = _simuPOP_baop.PedigreeMating_swigregister
PedigreeMating_swigregister(PedigreeMating)
 
class HeteroMating(MatingScheme):
    """
    Details:
 
        A heterogeneous mating scheme that applies a list of homogeneous
        mating schemes to different (virtual) subpopulations.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            HeteroMating(matingSchemes, subPopSize=[],
              shuffleOffspring=True)
 
        Details:
 
            Create a heterogeneous mating scheme that will apply a list of
            homogeneous mating schemes matingSchemes to different (virtual)
            subpopulations. The size of the offspring generation is determined
            by parameter subPopSize, which can be a list of subpopulation
            sizes or a Python function that returns a list of subpopulation
            sizes at each generation. Please refer to class MatingScheme for a
            detailed explanation of this parameter.  Each mating scheme
            defined in matingSchemes can be applied to one or more (virtual)
            subpopulation. If parameter subPops is not specified, a mating
            scheme will be applied to all subpopulations. If a list of
            (virtual) subpopulation is specified, the mating scheme will be
            applied to specific (virtual) subpopulations.  If multiple mating
            schemes are applied to the same subpopulation, a weight (parameter
            weight) can be given to each mating scheme to determine how many
            offspring it will produce. The default for all mating schemes are
            0. In this case, the number of offspring each mating scheme
            produces is proportional to the size of its parental (virtual)
            subpopulation. If all weights are negative, the numbers of
            offspring are determined by the multiplication of the absolute
            values of the weights and their respective parental (virtual)
            subpopulation sizes. If all weights are positive, the number of
            offspring produced by each mating scheme is proportional to these
            weights. Mating schemes with zero weight in this case will produce
            no offspring. If both negative and positive weights are present,
            negative weights are processed before positive ones.  If multiple
            mating schemes are applied to the same subpopulation, offspring
            produced by these mating schemes are shuffled randomly. If this is
            not desired, you can turn off offspring shuffling by setting
            parameter shuffleOffspring to False.
 
 
        """
        _simuPOP_baop.HeteroMating_swiginit(self,_simuPOP_baop.new_HeteroMating(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_HeteroMating
HeteroMating_swigregister = _simuPOP_baop.HeteroMating_swigregister
HeteroMating_swigregister(HeteroMating)
 
class pyPopIterator(object):
    """
    Details:
 
        This class implements a Python itertor class that can be used to
        iterate through populations in a population.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            pyPopIterator(begin, end)
 
 
        """
        _simuPOP_baop.pyPopIterator_swiginit(self,_simuPOP_baop.new_pyPopIterator(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_pyPopIterator
    def next(self):
        """
        Usage:
 
            x.__next__()
 
 
        """
        return _simuPOP_baop.pyPopIterator_next(self)
 
pyPopIterator.__iter__ = new_instancemethod(_simuPOP_baop.pyPopIterator___iter__,None,pyPopIterator)
pyPopIterator.next = new_instancemethod(_simuPOP_baop.pyPopIterator_next,None,pyPopIterator)
pyPopIterator.__next__ = new_instancemethod(_simuPOP_baop.pyPopIterator___next__,None,pyPopIterator)
pyPopIterator_swigregister = _simuPOP_baop.pyPopIterator_swigregister
pyPopIterator_swigregister(pyPopIterator)
 
class Simulator(object):
    """
    Details:
 
        A simuPOP simulator is responsible for evolving one or more
        populations forward in time, subject to various operators.
        Populations in a simulator are created from one or more replicates
        of specified populations. A number of functions are provided to
        access and manipulate populations, and most importantly, to evolve
        them.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            Simulator(pops, rep=1, stealPops=True)
 
        Details:
 
            Create a simulator with rep (default to 1) replicates of
            populations pops, which is a list of populations although a single
            population object is also acceptable. Contents of passed
            populations are by default moved to the simulator to avoid
            duplication of potentially large population objects, leaving empty
            populations behind. This behavior can be changed by setting
            stealPops to False, in which case populations are copied to the
            simulator.
 
 
        """
        _simuPOP_baop.Simulator_swiginit(self,_simuPOP_baop.new_Simulator(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_Simulator
    def clone(self):
        """
        Usage:
 
            x.clone()
 
        Details:
 
            Clone a simulator, along with all its populations. Note that
            Python assign statement simu1 = simu only creates a symbolic link
            to an existing simulator.
 
 
        """
        return _simuPOP_baop.Simulator_clone(self)
 
    def numRep(self):
        """
        Usage:
 
            x.numRep()
 
        Details:
 
            Return the number of replicates.
 
 
        """
        return _simuPOP_baop.Simulator_numRep(self)
 
    def population(self, *args, **kwargs):
        """
        Usage:
 
            x.population(rep)
 
        Details:
 
            Return a reference to the rep-th population of a simulator. The
            reference will become invalid once the simulator starts evolving
            or becomes invalid (removed). If an independent copy of the
            population is needed, you can use population.clone() to create a
            cloned copy or simulator.extract() to remove the population from
            the simulator.
 
 
        """
        return _simuPOP_baop.Simulator_population(self, *args, **kwargs)
 
    def add(self, *args, **kwargs):
        """
        Usage:
 
            x.add(pop, stealPop=True)
 
        Details:
 
            Add a population pop to the end of an existing simulator. This
            function by default moves pop to the simulator, leaving an empty
            population for passed population object. If steal is set to False,
            the population will be copied to the simulator, and thus
            unchanged.
 
 
        """
        return _simuPOP_baop.Simulator_add(self, *args, **kwargs)
 
    def extract(self, *args, **kwargs):
        """
        Usage:
 
            x.extract(rep)
 
        Details:
 
            Extract the rep-th population from a simulator. This will reduce
            the number of populations in this simulator by one.
 
 
        """
        return _simuPOP_baop.Simulator_extract(self, *args, **kwargs)
 
    def populations(self):
        """
        Usage:
 
            x.populations()
 
        Details:
 
            Return a Python iterator that can be used to iterate through all
            populations in a simulator.
 
 
        """
        return _simuPOP_baop.Simulator_populations(self)
 
    def evolve(self, *args, **kwargs):
        """
        Usage:
 
            x.evolve(initOps=[], preOps=[], matingScheme=MatingScheme,
              postOps=[], finalOps=[], gen=-1, dryrun=False)
 
        Details:
 
            Evolve all populations gen generations, subject to several lists
            of operators which are applied at different stages of an
            evolutionary process. Operators initOps are applied to all
            populations (subject to applicability restrictions of the
            operators, imposed by the rep parameter of these operators) before
            evolution. They are used to initialize populations before
            evolution. Operators finalOps are applied to all populations after
            the evolution.  Operators preOps, and postOps are applied during
            the life cycle of each generation. These operators can be applied
            at all or some of the generations, to all or some of the evolving
            populations, depending the begin, end, step, at and reps
            parameters of these operators. These operators are applied in the
            order at which they are specified. populations in a simulator are
            evolved one by one. At each generation, operators preOps are
            applied to the parental generations. A mating scheme is then used
            to populate an offspring generation. For each offspring, his or
            her sex is determined before during-mating operators of the mating
            scheme are used to transmit parental genotypes. After an offspring
            generation is successfully generated and becomes the current
            generation, operators postOps are applied to the offspring
            generation. If any of the preOps and postOps fails (return False),
            the evolution of a population will be stopped. The generation
            number of a population, which is the variable "gen" in each
            populations local namespace, is increased by one if an offspring
            generation has been successfully populated even if a post-mating
            operator fails. Another variable "rep" will also be set to
            indicate the index of each population in the simulator. Note that
            populations in a simulator does not have to have the same
            generation number. You could reset a population's generation
            number by changing this variable.  Parameter gen can be set to a
            positive number, which is the number of generations to evolve. If
            a simulator starts at the beginning of a generation g (for example
            0), a simulator will stop at the beginning (instead of the end) of
            generation g + gen (for example gen). If gen is negative
            (default), the evolution will continue indefinitely, until all
            replicates are stopped by operators that return False at some
            point (these operators are called terminators). At the end of the
            evolution, the generations that each replicates have evolved are
            returned. Note that finalOps are applied to all applicable
            population, including those that have stopped before others.  If
            parameter dryrun is set to True, this function will print a
            description of the evolutionary process generated by function
            describeEvolProcess() and exits.
 
 
        """
        return _simuPOP_baop.Simulator_evolve(self, *args, **kwargs)
 
    def vars(self, *args, **kwargs):
        """
        Usage:
 
            x.vars(rep, subPop=[])
 
        Details:
 
            Return the local namespace of the rep-th population, equivalent to
            x.Population(rep).vars(subPop).
 
 
        """
        return _simuPOP_baop.Simulator_vars(self, *args, **kwargs)
 
Simulator.clone = new_instancemethod(_simuPOP_baop.Simulator_clone,None,Simulator)
Simulator.numRep = new_instancemethod(_simuPOP_baop.Simulator_numRep,None,Simulator)
Simulator.population = new_instancemethod(_simuPOP_baop.Simulator_population,None,Simulator)
Simulator.add = new_instancemethod(_simuPOP_baop.Simulator_add,None,Simulator)
Simulator.extract = new_instancemethod(_simuPOP_baop.Simulator_extract,None,Simulator)
Simulator.populations = new_instancemethod(_simuPOP_baop.Simulator_populations,None,Simulator)
Simulator.evolve = new_instancemethod(_simuPOP_baop.Simulator_evolve,None,Simulator)
Simulator.vars = new_instancemethod(_simuPOP_baop.Simulator_vars,None,Simulator)
Simulator.__cmp__ = new_instancemethod(_simuPOP_baop.Simulator___cmp__,None,Simulator)
Simulator_swigregister = _simuPOP_baop.Simulator_swigregister
Simulator_swigregister(Simulator)
 
 
def describeEvolProcess(*args, **kwargs):
  """
    Usage:
 
        describeEvolProcess(initOps=[], preOps=[],
          matingScheme=MatingScheme, postOps=[], finalOps=[], gen=-1,
          numRep=1)
 
    Details:
 
        This function takes the same parameters as Simulator.evolve and
        output a description of how an evolutionary process will be
        executed. It is recommended that you call this function if you
        have any doubt how your simulation will proceed.
 
 
    """
  return _simuPOP_baop.describeEvolProcess(*args, **kwargs)
class PyEval(BaseOperator):
    """
    Details:
 
        A PyEval operator evaluates a Python expression in a population's
        local namespace when it is applied to this population. The result
        is written to an output specified by parameter output.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            PyEval(expr="", stmts="", exposePop="", output=">", begin=0,
              end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL,
              infoFields=[])
 
        Details:
 
            Create a PyEval operator that evaluates a Python expression expr
            in a population's local namespace when it is applied to this
            population. If Python statements stmts is given (a single or
            multi-line string), the statement will be executed before expr. If
            exposePop is set to an non-empty string, the current population
            will be exposed in its own local namespace as a variable with this
            name. This allows the execution of expressions such as
            'pop.individual(0).allele(0)'. The result of expr will be sent to
            an output stream specified by parameter output. The exposed
            population variable will be removed after expr is evaluated.
            Please refer to class BaseOperator for other parameters.
 
        Note:
 
            Although the statements and expressions are evaluated in a
            population's local namespace, they have access to a global
            namespace which is the module global namespace. It is therefore
            possible to refer to any module variable in these expressions.
            Such mixed use of local and global variables is, however, strongly
            discouraged.
 
 
        """
        _simuPOP_baop.PyEval_swiginit(self,_simuPOP_baop.new_PyEval(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_PyEval
    def evaluate(self, *args, **kwargs):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.PyEval_evaluate(self, *args, **kwargs)
 
PyEval.evaluate = new_instancemethod(_simuPOP_baop.PyEval_evaluate,None,PyEval)
PyEval_swigregister = _simuPOP_baop.PyEval_swigregister
PyEval_swigregister(PyEval)
 
class PyExec(PyEval):
    """
    Details:
 
        This operator executes given Python statements in a population's
        local namespace when it is applied to this population.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            PyExec(stmts="", exposePop="", output=">", begin=0, end=-1,
              step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a PyExec operator that executes statements stmts in a
            population's local namespace when it is applied to this
            population. If exposePop is given, current population will be
            exposed in its local namespace as a variable named by exposePop.
            Although multiple statements can be executed, it is recommended
            that you use this operator to execute short statements and use
            PyOperator for more complex once. Note that exposed population
            variables will be removed after the statements are executed.
 
 
        """
        _simuPOP_baop.PyExec_swiginit(self,_simuPOP_baop.new_PyExec(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_PyExec
PyExec_swigregister = _simuPOP_baop.PyExec_swigregister
PyExec_swigregister(PyExec)
 
class InfoEval(BaseOperator):
    """
    Details:
 
        Unlike operator PyEval and PyExec that work at the population
        level, in a population's local namespace, operator InfoEval works
        at the individual level, working with individual information
        fields. When this operator is applied to a population, information
        fields of eligible individuals are put into the local namespace of
        the population. A Python expression is then evaluated for each
        individual. The result is written to an output.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            InfoEval(expr="", stmts="", usePopVars=False, exposeInd="",
              output=">", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
              subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create an operator that evaluate a Python expression expr using
            individual information fields and population variables as
            variables. If exposeInd is not empty, the individual itself will
            be exposed in the population's local namespace as a variable with
            name specified by exposeInd.  A Python expression (expr) is
            evaluated for each individual. The results are converted to
            strings and are written to an output specified by parameter
            output. Optionally, a statement (or several statements separated
            by newline) can be executed before expr is evaluated. The
            evaluation of this statement may change the value of information
            fields.  This operator is by default applied post-mating. If it
            stage is set to DuringMating, it will be applied to all offspring,
            regardless of subPops settings.  Parameter usePopVars is obsolete
            because population variables are always usable in such
            expressions.
 
 
        """
        _simuPOP_baop.InfoEval_swiginit(self,_simuPOP_baop.new_InfoEval(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_InfoEval
InfoEval_swigregister = _simuPOP_baop.InfoEval_swigregister
InfoEval_swigregister(InfoEval)
 
class InfoExec(InfoEval):
    """
    Details:
 
        Operator InfoExec is similar to InfoEval in that it works at the
        individual level, using individual information fields as
        variables. This is usually used to change the value of information
        fields. For example, "b=a*2" will set the value of information
        field b to a*a for all individuals.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            InfoExec(stmts="", usePopVars=False, exposeInd="", output="",
              begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
              subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create an operator that executes Python statements stmts using
            individual information fields and population variables as
            variables. If exposeInd is not empty, the individual itself will
            be exposed in the population's local namespace as a variable with
            name specified by exposeInd.  One or more python statements
            (stmts) are executed for each individual. Information fields of
            these individuals are then updated from the corresponding
            variables. For example, a=1 will set information field a of all
            individuals to 1, a=b will set information field a of all
            individuals to information field b or a population variable b if b
            is not an information field but a population variable, and
            a=ind.sex() will set information field a of all individuals to its
            sex (needs exposeInd='ind'.  This operator is by default applied
            post-mating. If it stage is set to DuringMating, it will be
            applied to all offspring, regardless of subPops settings.
            Parameter usePopVars is obsolete because population variables will
            always be usable.
 
 
        """
        _simuPOP_baop.InfoExec_swiginit(self,_simuPOP_baop.new_InfoExec(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_InfoExec
InfoExec_swigregister = _simuPOP_baop.InfoExec_swigregister
InfoExec_swigregister(InfoExec)
 
class Stat(BaseOperator):
    """
    Details:
 
        Operator Stat calculates various statistics of the population
        being applied and sets variables in its local namespace. Other
        operators or functions can retrieve results from or evalulate
        expressions in this local namespace after Stat is applied.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            Stat(popSize=False, numOfMales=False, numOfAffected=False,
              alleleFreq=[], heteroFreq=[], homoFreq=[], genoFreq=[],
              haploFreq=[], sumOfInfo=[], meanOfInfo=[], varOfInfo=[],
              maxOfInfo=[], minOfInfo=[], LD=[], association=[],
              neutrality=[], structure=[], HWE=[], vars=ALL_AVAIL, suffix="",
              output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
              subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a Stat operator that calculates specified statistics of a
            population when it is applied to this population. This operator is
            by default applied after mating (parameter stage) and can be
            applied to specified replicates (parameter rep) at specified
            generations (parameter begin, end, step, and at). This operator
            does not produce any output (ignore parameter output) after
            statistics are calculated. Instead, it stores results in the local
            namespace of the population being applied. Other operators can
            retrieve these variables or evalulate expression directly in this
            local namespace. Please refer to operator BaseOperator for a
            detailed explanation of these common operator parameters.   Stat
            supports parameter subPops. It usually calculate the same set of
            statistics for all subpopulations (subPops=subPopList()). If a
            list of (virtual) subpopulations are specified, statistics for
            only specified subpopulations will be calculated. However,
            different statistics treat this parameter differently and it is
            very important to check its reference before you use subPops for
            any statistics.  Calculated statistics are saved as variables in a
            population's local namespace. These variables can be numbers,
            lists or dictionaries and can be retrieved using functions
            Population.vars() or Population.dvars(). A special default
            dictionary (defdict) is used for dictionaries whose keys are
            determined dynamically. Accessing elements of such a dictionary
            with an invalid key will yield value 0 instead of a KeyError. If
            the same variables are calculated for one or more (virtual)
            subpopulation, the variables are stored in
            vars()['subPop'][sp]['var'] where sp is a subpopulation ID (sp) or
            a tuple of virtual subpopulation ID ((sp, vsp)).
            Population.vars(sp) and Population.dvars(sp) provide shortcuts to
            these variables.  Operator Stat outputs a number of most useful
            variables for each type of statistic. For example, alleleFreq
            calculates both allele counts and allele frequencies and it by
            default sets variable alleleFreq (dvars().alleleFreq) for all or
            specified subpopulations. If this does not fit your need, you can
            use parameter vars to output additional parameters, or limit the
            output of existing parameters. More specifically, for this
            particular statistic, the available variables are 'alleleFreq',
            'alleleNum', 'alleleFreq_sp' ('alleleFreq' in each subpopulation),
            and 'alleleNum_sp' ('alleleNum' in each subpopulation). You can
            set vars=['alleleNum_sp'] to output only subpopulation specific
            allele count. An optional suffix (parameter suffix) can be used to
            append a suffix to default parameter names. This parameter can be
            used, for example, to calculate and store the same statistics for
            different subpopulations (e.g. pairwise Fst).  Operator Stat
            supports the following statistics:  popSize: If popSize=True,
            number of individuals in all or specified subpopulations
            (parameter subPops) will be set to the following variables:
            *   popSize (default): Number of individuals in all or specified
            subpopulations. Because subPops does not have to cover all
            individuals, it may not be the actual population size.
            *   popSize_sp: Size of (virtual) subpopulation sp.
            *   subPopSize (default): A list of (virtual) subpopulation sizes.
            This variable is easier to use than accessing popSize from each
            (virtual) subpopulation.numOfMales: If numOfMales=True, number of
            male individuals in all or specified (virtual) subpopulations will
            be set to the following variables:
            *   numOfMales (default): Total number of male individuals in all
            or specified (virtual) subpopulations.
            *   numOfFemales (default): Total number of female individuals in
            all or specified (virtual) subpopulations.
            *   propOfMales: Proportion of male individuals.
            *   propOfFemales: Proportion of female individuals.
            *   numOfMales_sp: Number of male individuals in each (virtual)
            subpopulation.
            *   numOfFemales_sp: Number of female individuals in each
            (virtual) subpopulation.
            *   propOfMales_sp: Proportion of male individuals in each
            (virtual) subpopulation.
            *   propOfFemales_sp: Proportion of female individuals in each
            (virtual) subpopulation.numOfAffected: If numOfAffected=True,
            number of affected individuals in all or specified (virtual)
            subpopulations will be set to the following variables:
            *   numOfAffected (default): Total number of affected individuals
            in all or specified (virtual) subpopulations.
            *   numOfUnaffected (default): Total number of unaffected
            individuals in all or specified (virtual) subpopulations.
            *   propOfAffected: Proportion of affected individuals.
            *   propOfUnaffected: Proportion of unaffected individuals.
            *   numOfAffected_sp: Number of affected individuals in each
            (virtual) subpopulation.
            *   numOfUnaffected_sp: Number of unaffected individuals in each
            (virtual) subpopulation.
            *   propOfAffected_sp: Proportion of affected individuals in each
            (virtual) subpopulation.
            *   propOfUnaffected_sp: Proportion of unaffected individuals in
            each (virtual) subpopulation.alleleFreq: This parameter accepts a
            list of loci (loci indexes, names, or ALL_AVAIL), at which allele
            frequencies will be calculated. This statistic outputs the
            following variables, all of which are dictionary (with loci
            indexes as keys) of default dictionaries (with alleles as keys).
            For example, alleleFreq[loc][a] returns 0 if allele a does not
            exist.
            *   alleleFreq (default): alleleFreq[loc][a] is the frequency of
            allele a at locus for all or specified (virtual) subpopulations.
            *   alleleNum (default): alleleNum[loc][a] is the number of allele
            a at locus for all or specified (virtual) subpopulations.
            *   alleleFreq_sp: Allele frequency in each (virtual)
            subpopulation.
            *   alleleNum_sp: Allele count in each (virtual)
            subpopulation.heteroFreq and homoFreq: These parameters accept a
            list of loci (by indexes or names), at which the number and
            frequency of homozygotes and/or heterozygotes will be calculated.
            These statistics are only available for diploid populations. The
            following variables will be outputted:
            *   heteroFreq (default for parameter heteroFreq): A dictionary of
            proportion of heterozygotes in all or specified (virtual)
            subpopulations, with loci indexes as dictionary keys.
            *   homoFreq (default for parameter homoFreq): A dictionary of
            proportion of homozygotes in all or specified (virtual)
            subpopulations.
            *   heteroNum: A dictionary of number of heterozygotes in all or
            specified (virtual) subpopulations.
            *   homoNum: A dictionary of number of homozygotes in all or
            specified (virtual) subpopulations.
            *   heteroFreq_sp: A dictionary of proportion of heterozygotes in
            each (virtual) subpopulation.
            *   homoFreq_sp: A dictionary of proportion of homozygotes in each
            (virtual) subpopulation.
            *   heteroNum_sp: A dictionary of number of heterozygotes in each
            (virtual) subpopulation.
            *   homoNum_sp: A dictionary of number of homozygotes in each
            (virtual) subpopulation.genoFreq: This parameter accept a list of
            loci (by indexes or names) at which number and frequency of all
            genotypes are outputed as a dictionary (indexed by loci indexes)
            of default dictionaries (indexed by tuples of possible indexes).
            This statistic is available for all population types with genotype
            defined as ordered alleles at a locus. The length of genotype
            equals the number of homologous copies of chromosomes (ploidy) of
            a population. Genotypes for males or females on sex chromosomes or
            in haplodiploid populations will have different length. Because
            genotypes are ordered, (1, 0) and (0, 1) (two possible genotypes
            in a diploid population) are considered as different genotypes.
            This statistic outputs the following variables:
            *   genoFreq (default): A dictionary (by loci indexes) of default
            dictionaries (by genotype) of genotype frequencies. For example,
            genoFreq[1][(1, 0)] is the frequency of genotype (1, 0) at locus
            1.
            *   genoNum (default): A dictionary of default dictionaries of
            genotype counts of all or specified (virtual) subpopulations.
            *   genoFreq_sp: genotype frequency in each specified (virtual)
            subpopulation.
            *   genoFreq_sp: genotype count in each specified (virtual)
            subpopulation.haploFreq: This parameter accepts one or more lists
            of loci (by index) at which number and frequency of haplotypes are
            outputted as default dictionaries. [(1,2)] can be abbreviated to
            (1,2). For example, using parameter haploFreq=(1,2,4), all
            haplotypes at loci 1, 2 and 4 are counted. This statistic saves
            results to dictionary (with loci index as keys) of default
            dictionaries (with haplotypes as keys) such as
            haploFreq[(1,2,4)][(1,1,0)] (frequency of haplotype (1,1,0) at
            loci (1,2,3)). This statistic works for all population types.
            Number of haplotypes for each individual equals to his/her ploidy
            number. Haplodiploid populations are supported in the sense that
            the second homologous copy of the haplotype is not counted for
            male individuals. This statistic outputs the following variables:
            *   haploFreq (default): A dictionary (with tuples of loci indexes
            as keys) of default dictionaries of haplotype frequencies. For
            example, haploFreq[(0, 1)][(1,1)] records the frequency of
            haplotype (1,1) at loci (0, 1) in all or specified (virtual)
            subpopulations.
            *   haploNum (default): A dictionary of default dictionaries of
            haplotype counts in all or specified (virtual) subpopulations.
            *   haploFreq_sp: Halptype frequencies in each (virtual)
            subpopulation.
            *   haploNum_sp: Halptype count in each (virtual)
            subpopulation.sumOfinfo, meanOfInfo, varOfInfo, maxOfInfo and
            minOfInfo: Each of these five parameters accepts a list of
            information fields. For each information field, the sum, mean,
            variance, maximum or minimal (depending on the specified
            parameter(s)) of this information field at iddividuals in all or
            specified (virtual) subpopulations will be calculated. The results
            will be put into the following population variables:
            *   sumOfInfo (default for sumOfInfo): A dictionary of the sum of
            specified information fields of individuals in all or specified
            (virtual) subpopulations. This dictionary is indexed by names of
            information fields.
            *   meanOfInfo (default for meanOfInfo): A dictionary of the mean
            of information fields of all individuals.
            *   varOfInfo (default for varOfInfo): A dictionary of the sample
            variance of information fields of all individuals.
            *   maxOfInfo (default for maxOfInfo): A dictionary of the maximum
            value of information fields of all individuals.
            *   minOfInfo (default for minOfInfo): A dictionary of the minimal
            value of information fields of all individuals.
            *   sumOfInfo_sp: A dictionary of the sum of information fields of
            individuals in each subpopulation.
            *   meanOfInfo_sp: A dictionary of the mean of information fields
            of individuals in each subpopulation.
            *   varOfInfo_sp: A dictionary of the sample variance of
            information fields of individuals in each subpopulation.
            *   maxOfInfo_sp: A dictionary of the maximum value of information
            fields of individuals in each subpopulation.
            *   minOfInfo_sp: A dictionary of the minimal value of information
            fields of individuals in each subpopulation.LD: Parameter LD
            accepts one or a list of loci pairs (e.g. LD=[[0,1], [2,3]]) with
            optional primary alleles at both loci (e.g. LD=[0,1,0,0]). For
            each pair of loci, this operator calculates linkage disequilibrium
            and optional association statistics between two loci. When primary
            alleles are specified, signed linkage disequilibrium values are
            calculated with non-primary alleles are combined. Otherwise,
            absolute values of diallelic measures are combined to yield
            positive measure of LD. Association measures are calculated from a
            m by n contigency of haplotype counts (m=n=2 if primary alleles
            are specified). Please refer to the simuPOP user's guide for
            detailed information. This statistic sets the following variables:
            *   LD (default) Basic LD measure for haplotypes in all or
            specified (virtual) subpopulations. Signed if primary alleles are
            specified.
            *   LD_prime (default) Lewontin's D' measure for haplotypes in all
            or specified (virtual) subpopulations. Signed if primary alleles
            are specified.
            *   R2 (default) Correlation LD measure for haplotypes in all or
            specified (virtual) subpopulations.
            *   LD_ChiSq ChiSq statistics for a contigency table with
            frequencies of haplotypes in all or specified (virtual)
            subpopulations.
            *   LD_ChiSq_p Single side p-value for the ChiSq statistic.
            Degrees of freedom is determined by number of alleles at both loci
            and the specification of primary alleles.
            *   CramerV Normalized ChiSq statistics.
            *   LD_sp Basic LD measure for haplotypes in each (virtual)
            subpopulation.
            *   LD_prime_sp Lewontin's D' measure for haplotypes in each
            (virtual) subpopulation.
            *   R2_sp R2 measure for haplotypes in each (virtual)
            subpopulation.
            *   LD_ChiSq_sp ChiSq statistics for each (virtual) subpopulation.
            *   LD_ChiSq_p_sp p value for the ChiSq statistics for each
            (virtual) subpopulation.
            *   CramerV_sp Cramer V statistics for each (virtual)
            subpopulation.association: Parameter association accepts a list of
            loci, which can be a list of indexes, names, or ALL_AVAIL. At each
            locus, one or more statistical tests will be performed to test
            association between this locus and individual affection status.
            Currently, simuPOP provides the following tests:
            *   An allele-based Chi-square test using alleles counts. This
            test can be applied to loci with more than two alleles, and to
            haploid populations.
            *   A genotype-based Chi-square test using genotype counts. This
            test can be applied to loci with more than two alleles (more than
            3 genotypes) in diploid populations. aA and Aa are considered to
            be the same genotype.
            *   A genotype-based Cochran-Armitage trend test. This test can
            only be applied to diallelic loci in diploid populations. A
            codominant model is assumed. This statistic sets the following
            variables:
            *   Allele_ChiSq A dictionary of allele-based Chi-Square
            statistics for each locus, using cases and controls in all or
            specified (virtual) subpopulations.
            *   Allele_ChiSq_p (default) A dictionary of p-values of the
            corresponding Chi-square statistics.
            *   Geno_ChiSq A dictionary of genotype-based Chi-Square
            statistics for each locus, using cases and controls in all or
            specified (virtual) subpopulations.
            *   Geno_ChiSq_p A dictionary of p-values of the corresponding
            genotype-based Chi-square test.
            *   Armitage_p A dictionary of p-values of the Cochran-Armitage
            tests, using cases and controls in all or specified (virtual)
            subpopulations.
            *   Allele_ChiSq_sp A dictionary of allele-based Chi-Square
            statistics for each locus, using cases and controls from each
            subpopulation.
            *   Allele_ChiSq_p_sp A dictionary of p-values of allele-based
            Chi-square tests, using cases and controls from each (virtual)
            subpopulation.
            *   Geno_ChiSq_sp A dictionary of genotype-based Chi-Square tests
            for each locus, using cases and controls from each subpopulation.
            *   Geno_ChiSq_p_sp A dictionary of p-values of genotype-based
            Chi-Square tests, using cases and controls from each
            subpopulation.
            *   Armitage_p_sp A dictionary of p-values of the Cochran-
            Armitage tests, using cases and controls from each
            subpopulation.neutrality: This parameter performs neutrality tests
            (detection of natural selection) on specified loci, which can be a
            list of loci indexes, names or ALL_AVAIL. It currently only
            outputs Pi, which is the average number of pairwise difference
            between loci. This statistic outputs the following variables:
            *   Pi Mean pairwise difference between all sequences from all or
            specified (virtual) subpopulations.
            *   Pi_sp Mean paiewise difference between all sequences in each
            (virtual) subpopulation.structure: Parameter structure accepts a
            list of loci at which statistics that measure population structure
            are calculated. structure accepts a list of loci indexes, names or
            ALL_AVAIL. This parameter currently supports the following
            statistics:
            *   Weir and Cockerham's Fst (1984). This is the most widely used
            estimator of Wright's fixation index and can be used to measure
            Population differentiation. However, this method is designed to
            estimate Fst from samples of larger populations and might not be
            appropriate for the calculation of Fst of large populations.
            *   Nei's Gst (1973). The Gst estimator is another estimator for
            Wright's fixation index but it is extended for multi-allele (more
            than two alleles) and multi-loci cases. This statistics should be
            used if you would like to obtain a true Fst value of a large
            Population.
            *   F_st (default) The WC84 Fst statistic estimated for all
            specified loci.
            *   F_is The WC84 Fis statistic estimated for all specified loci.
            *   F_it The WC84 Fit statistic estimated for all specified loci.
            *   f_st A dictionary of locus level WC84 Fst values.
            *   f_is A dictionary of locus level WC84 Fis values.
            *   f_it A dictionary of locus level WC84 Fit values.
            *   G_st Nei's Gst statistic estimated for all specified loci.
            *   g_st A dictionary of Nei's Gst statistic estimated for each
            locus.HWE: Parameter HWE accepts a list of loci at which exact
            two-side tests for Hardy-Weinberg equilibrium will be performed.
            This statistic is only available for diallelic loci in diploid
            populations. HWE can be a list of loci indexes, names or
            ALL_AVAIL. This statistic outputs the following variables:
            *   HWE (default) A dictionary of p-values of HWE tests using
            genotypes in all or specified (virtual) subpopulations.
            *   HWE_sp A dictionary of p-values of HWS tests using genotypes
            in each (virtual) subpopulation.
 
 
        """
        _simuPOP_baop.Stat_swiginit(self,_simuPOP_baop.new_Stat(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_Stat
Stat_swigregister = _simuPOP_baop.Stat_swigregister
Stat_swigregister(Stat)
 
class PyOutput(BaseOperator):
    """
    Details:
 
        This operator outputs a given string when it is applied to a
        population.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            PyOutput(msg="", output=">", begin=0, end=-1, step=1, at=[],
              reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Creates a PyOutput operator that outputs a string msg to output
            (default to standard terminal output) when it is applied to a
            population. Please refer to class BaseOperator for a detailed
            description of common operator parameters such as stage, begin and
            output.
 
 
        """
        _simuPOP_baop.PyOutput_swiginit(self,_simuPOP_baop.new_PyOutput(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_PyOutput
PyOutput_swigregister = _simuPOP_baop.PyOutput_swigregister
PyOutput_swigregister(PyOutput)
 
class Dumper(BaseOperator):
    """
    Details:
 
        This operator dumps the content of a population in a human
        readable format. Because this output format is not structured and
        can not be imported back to simuPOP, this operator is usually used
        to dump a small population to a terminal for demonstration and
        debugging purposes.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            Dumper(genotype=True, structure=True, ancGens=UNSPECIFIED,
              width=1, max=100, loci=[], output=">", begin=0, end=-1, step=1,
              at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a operator that dumps the genotype structure (if structure
            is True) and genotype (if genotype is True) to an output ( default
            to standard terminal output). Because a population can be large,
            this operator will only output the first 100 (parameter max)
            individuals of the present generation (parameter ancGens). All
            loci will be outputed unless parameter loci are used to specify a
            subset of loci. If a list of (virtual) subpopulations are
            specified, this operator will only output individuals in these
            outputs. Please refer to class BaseOperator for a detailed
            explanation for common parameters such as output and stage.
 
 
        """
        _simuPOP_baop.Dumper_swiginit(self,_simuPOP_baop.new_Dumper(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_Dumper
Dumper_swigregister = _simuPOP_baop.Dumper_swigregister
Dumper_swigregister(Dumper)
 
class SavePopulation(BaseOperator):
    """
    Details:
 
        An operator that save populations to specified files.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            SavePopulation(output="", begin=0, end=-1, step=1, at=[],
              reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create an operator that saves a population to output when it is
            applied to the population. This operator supports all output
            specifications ('', 'filename', 'filename' prefixed by one or more
            '>' characters, and '!expr') but output from different operators
            will always replace existing files (effectively ignore '>'
            specification). Parameter subPops is ignored. Please refer to
            class BaseOperator for a detailed description about common
            operator parameters such as stage and begin.
 
 
        """
        _simuPOP_baop.SavePopulation_swiginit(self,_simuPOP_baop.new_SavePopulation(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_SavePopulation
SavePopulation_swigregister = _simuPOP_baop.SavePopulation_swigregister
SavePopulation_swigregister(SavePopulation)
 
class InitSex(BaseOperator):
    """
    Details:
 
        This operator initializes sex of individuals, either randomly or
        use a list of sexes.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            InitSex(maleFreq=0.5, maleProp=-1, sex=[], begin=0, end=-1,
              step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create an operator that initializes individual sex to MALE or
            FEMALE. By default, it assigns sex to individuals randomly, with
            equal probability of having a male or a female. This probabability
            can be adjusted through parameter maleFreq or be made to exact
            proportions by specifying parameter maleProp. Alternatively, a
            fixed sequence of sexes can be assigned. For example, if
            sex=[MALE, FEMALE], individuals will be assigned MALE and FEMALE
            successively. Parameter maleFreq or maleProp are ignored if sex is
            given. If a list of (virtual) subpopulation is specified in
            parameter subPop, only individuals in these subpopulations will be
            initialized. Note that the sex sequence, if used, is assigned
            repeatedly regardless of (virtual) subpopulation boundaries so
            that you can assign sex to all individuals in a population.
 
 
        """
        _simuPOP_baop.InitSex_swiginit(self,_simuPOP_baop.new_InitSex(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_InitSex
InitSex_swigregister = _simuPOP_baop.InitSex_swigregister
InitSex_swigregister(InitSex)
 
class InitInfo(BaseOperator):
    """
    Details:
 
        This operator initializes given information fields with a sequence
        of values, or a user-provided function such as random.random.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            InitInfo(values, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
              subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create an operator that initialize individual information fields
            infoFields using a sequence of values or a user-defined function.
            If a list of values are given, it will be used sequentially for
            all individuals. The values will be reused if its length is less
            than the number of individuals. The values will be assigned
            repeatedly regardless of subpopulation boundaries. If a Python
            function is given, it will be called, without any argument,
            whenever a value is needed. If a list of (virtual) subpopulation
            is specified in parameter subPop, only individuals in these
            subpopulations will be initialized.
 
 
        """
        _simuPOP_baop.InitInfo_swiginit(self,_simuPOP_baop.new_InitInfo(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_InitInfo
InitInfo_swigregister = _simuPOP_baop.InitInfo_swigregister
InitInfo_swigregister(InitInfo)
 
class InitGenotype(BaseOperator):
    """
    Details:
 
        This operator assigns alleles at all or part of loci with given
        allele frequencies, proportions or values. This operator
        initializes all chromosomes, including unused genotype locations
        and customized chromosomes.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            InitGenotype(freq=[], genotype=[], prop=[], haplotypes=[],
              loci=ALL_AVAIL, ploidy=ALL_AVAIL, begin=0, end=1, step=1, at=[],
              reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            This function creates an initializer that initializes individual
            genotypes with random alleles or haplotypes with specified
            frequencies (parameter freq) or proportions (parameter prop). If
            parameter haplotypes is not specified, freq specifies the allele
            frequencies of alleles 0, 1, ... respectively. Alternatively, you
            can use parameter prop to specified the exact proportions of
            alleles 0, 1, ..., although alleles with small proportions might
            not be assigned at all. Values of parameter prob or prop should
            add up to 1. If parameter haplotypes is specified, it should
            contain a list of haplotypes and parameter prob or prop specifies
            frequencies or proportions of each haplotype. If loci, ploidy
            and/or subPop are specified, only specified loci, ploidy, and
            individuals in these (virtual) subpopulations will be initialized.
            Parameter loci can be a list of loci indexes, names or ALL_AVAIL.
            If the length of a haplotype is not enough to fill all loci, the
            haplotype will be reused. If a list (or a single) haplotypes are
            specified without freq or prop, they are used with equal
            probability.  In the last case, if a sequence of genotype is
            specified, it will be uesd repeatedly to initialize all alleles
            sequentially. This works similar to function
            Population.setGenotype() except that you can limit the
            initialization to certain loci and ploidy.
 
 
        """
        _simuPOP_baop.InitGenotype_swiginit(self,_simuPOP_baop.new_InitGenotype(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_InitGenotype
InitGenotype_swigregister = _simuPOP_baop.InitGenotype_swigregister
InitGenotype_swigregister(InitGenotype)
 
class IdTagger(BaseOperator):
    """
    Details:
 
        An IdTagger gives a unique ID for each individual it is applies
        to. These ID can be used to uniquely identify an individual in a
        multi-generational population and be used to reliably reconstruct
        a Pedigree.  To ensure uniqueness across populations, a single
        source of ID is used for this operator. individual IDs are
        assigned consecutively starting from 1. Value 1 instead of 0 is
        used because most software applications use 0 as missing values
        for parentship. If you would like to reset the sequence or start
        from a different number, you can call the reset(startID) function
        of any IdTagger.  An IdTagger is usually used during-mating to
        assign ID to each offspring. However, if it is applied directly to
        a population, it will assign unique IDs to all individuals in this
        population. This property is usually used in the preOps parameter
        of function Simulator.evolve to assign initial ID to a population.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            IdTagger(begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
              subPops=ALL_AVAIL, output="", infoFields="ind_id")
 
        Details:
 
            Create an IdTagger that assign an unique ID for each individual it
            is applied to. The IDs are created sequentially and are stored in
            an information field specified in parameter infoFields (default to
            ind_id). This operator is considered a during-mating operator but
            it can be used to set ID for all individuals of a population when
            it is directly applied to the population.
 
 
        """
        _simuPOP_baop.IdTagger_swiginit(self,_simuPOP_baop.new_IdTagger(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_IdTagger
    def reset(self, startID = 1):
        """
        Usage:
 
            x.reset(startID=1)
 
        Details:
 
            Reset the global individual ID number so that IdTaggers will start
            from id (default to 1) again.
 
 
        """
        return _simuPOP_baop.IdTagger_reset(self, startID)
 
IdTagger.reset = new_instancemethod(_simuPOP_baop.IdTagger_reset,None,IdTagger)
IdTagger_swigregister = _simuPOP_baop.IdTagger_swigregister
IdTagger_swigregister(IdTagger)
 
class InheritTagger(BaseOperator):
    """
    Details:
 
        An inheritance tagger passes values of parental information
        field(s) to the corresponding fields of offspring. If there are
        two parental values from parents of a sexual mating event, a
        parameter mode is used to specify how to assign offspring
        information fields.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            InheritTagger(mode=PATERNAL, begin=0, end=-1, step=1, at=[],
              reps=ALL_AVAIL, subPops=ALL_AVAIL, output="", infoFields=[])
 
        Details:
 
            Creates an inheritance tagger that passes values of parental
            information fields (parameter infoFields) to the corresponding
            fields of offspring. If there is only one parent, values at the
            specified information fields are copied directly. If there are two
            parents, parameter mode specifies how to pass them to an
            offspring. More specifically,
            *   mode=MATERNAL Passing the value from mother.
            *   mode=PATERNAL Passing the value from father.
            *   mode=MEAN Passing the average of two values.
            *   mode=MAXIMUM Passing the maximum value of two values.
            *   mode=MINIMUM Passing the minimum value of two values.
            *   mode=SUMMATION Passing the summation of two values.
            *   mode=MULTIPLICATION Passing the multiplication of two values.
            An RuntimeError will be raised if any of the parents does not
            exist. This operator does not support parameter subPops and does
            not output any information.
 
 
        """
        _simuPOP_baop.InheritTagger_swiginit(self,_simuPOP_baop.new_InheritTagger(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_InheritTagger
InheritTagger_swigregister = _simuPOP_baop.InheritTagger_swigregister
InheritTagger_swigregister(InheritTagger)
 
class SummaryTagger(BaseOperator):
    """
    Details:
 
        A summary tagger summarize values of one or more parental
        information field to another information field of an offspring. If
        mating is sexual, two sets of parental values will be involved.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            SummaryTagger(mode=MEAN, begin=0, end=-1, step=1, at=[],
              reps=ALL_AVAIL, subPops=ALL_AVAIL, output="", infoFields=[])
 
        Details:
 
            Creates a summary tagger that summarize values of one or more
            parental information field (infoFields[:-1]) to an offspring
            information field (infoFields[-1]). A parameter mode specifies how
            to pass summarize parental values. More specifically,
            *   mode=MEAN Passing the average of values.
            *   mode=MAXIMUM Passing the maximum value of values.
            *   mode=Minumum Passing the minimum value of values.
            *   mode=SUMMATION Passing the sum of values.
            *   mode=MULTIPLICATION Passing the multiplication of values. This
            operator does not support parameter subPops and does not output
            any information.
 
 
        """
        _simuPOP_baop.SummaryTagger_swiginit(self,_simuPOP_baop.new_SummaryTagger(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_SummaryTagger
SummaryTagger_swigregister = _simuPOP_baop.SummaryTagger_swigregister
SummaryTagger_swigregister(SummaryTagger)
 
class ParentsTagger(BaseOperator):
    """
    Details:
 
        This tagging operator records the indexes of parents (relative to
        the parental generation) of each offspring in specified
        information fields ( default to father_idx and mother_idx). Only
        one information field should be specified if an asexsual mating
        scheme is used so there is one parent for each offspring.
        Information recorded by this operator is intended to be used to
        look up parents of each individual in multi-generational
        Population.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            ParentsTagger(begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
              subPops=ALL_AVAIL, output="", infoFields=["father_idx",
              "mother_idx"])
 
        Details:
 
            Create a parents tagger that records the indexes of parents of
            each offspring when it is applied to an offspring during-mating.
            If two information fields are specified (parameter infoFields,
            with default value ['father_idx', 'mother_idx']), they are used to
            record the indexes of each individual's father and mother. Value
            -1 will be assigned if any of the parent is missing. If only one
            information field is given, it will be used to record the index of
            the first valid parent (father if both parents are valid). This
            operator ignores parameters stage, output, and subPops.
 
 
        """
        _simuPOP_baop.ParentsTagger_swiginit(self,_simuPOP_baop.new_ParentsTagger(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_ParentsTagger
ParentsTagger_swigregister = _simuPOP_baop.ParentsTagger_swigregister
ParentsTagger_swigregister(ParentsTagger)
 
class PedigreeTagger(BaseOperator):
    """
    Details:
 
        This tagging operator records the ID of parents of each offspring
        in specified information fields (default to father_id and
        mother_id). Only one information field should be specified if an
        asexsual mating scheme is used so there is one parent for each
        offspring. Information recorded by this operator is intended to be
        used to record full pedigree information of an evolutionary
        process.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            PedigreeTagger(idField="ind_id", output="", outputFields=[],
              outputLoci=[], begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
              subPops=ALL_AVAIL, infoFields=["father_id", "mother_id"])
 
        Details:
 
            Create a pedigree tagger that records the ID of parents of each
            offspring when it is applied to an offspring during-mating. If two
            information fields are specified (parameter infoFields, with
            default value ['father_id', 'mother_id']), they are used to record
            the ID of each individual's father and mother stored in the
            idField (default to ind_id) field of the parents. Value -1 will be
            assigned if any of the parent is missing. If only one information
            field is given, it will be used to record the ID of the first
            valid parent (father if both pedigree are valid).  This operator
            by default does not send any output. If a valid output stream is
            given (should be in the form of '>>filename' so that output will
            be concatenated), this operator will output the ID of offspring,
            IDs of his or her parent(s), sex and affection status of
            offspring, and values at specified information fields
            (outputFields) and loci (outputLoci) in the format of off_id
            father_id mother_id M/F A/U fields genotype. father_id or
            mother_id will be ignored if only one parent is involved. This
            file format can be loaded using function loadPedigree.  Because
            only offspring will be outputed, individuals in the top-most
            ancestral generation will not be outputed. This is usually not a
            problem because individuals who have offspring in the next
            generation will be constructed by function loadPedigree, although
            their information fields and genotype will be missing. If you
            would like to create a file with complete pedigree information,
            you can apply this operator before evolution in the initOps
            parameter of functions Population.evolve or Simulator.evolve. This
            will output all individuals in the initial population (the top-
            most ancestral population after evolution) in the same format.
            Note that sex, affection status and genotype can be changed by
            other operators so this operator should usually be applied after
            all other operators are applied.
 
 
        """
        _simuPOP_baop.PedigreeTagger_swiginit(self,_simuPOP_baop.new_PedigreeTagger(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_PedigreeTagger
PedigreeTagger_swigregister = _simuPOP_baop.PedigreeTagger_swigregister
PedigreeTagger_swigregister(PedigreeTagger)
 
class PyTagger(BaseOperator):
    """
    Details:
 
        A Python tagger takes some information fields from both parents,
        pass them to a user provided Python function and set the offspring
        individual fields with the return values.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            PyTagger(func=None, begin=0, end=-1, step=1, at=[],
              reps=ALL_AVAIL, subPops=ALL_AVAIL, output="", infoFields=[])
 
        Details:
 
            Create a hybrid tagger that provides an user provided function
            func with values of specified information fields (determined by
            parameter names of this function) of parents and assign
            corresponding information fields of offspring with its return
            value. If more than one parent are available, maternal values are
            passed after paternal values. For example, if a function func(A,
            B) is passed, this operator will send two tuples with parental
            values of information fields 'A' and 'B' to this function and
            assign its return values to fields 'A' and 'B' of each offspring.
            The return value of this function should be a list, although a
            single value will be accepted if only one information field is
            specified. This operator ignores parameters stage, output and
            subPops.
 
 
        """
        _simuPOP_baop.PyTagger_swiginit(self,_simuPOP_baop.new_PyTagger(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_PyTagger
PyTagger_swigregister = _simuPOP_baop.PyTagger_swigregister
PyTagger_swigregister(PyTagger)
 
class Migrator(BaseOperator):
    """
    Details:
 
        This operator migrates individuals from (virtual) subpopulations
        to other subpopulations, according to either pre-specified
        destination subpopulation stored in an information field, or
        randomly according to a migration matrix.  In the former case,
        values in a specified information field (default to migrate_to)
        are considered as destination subpopulation for each individual.
        If subPops is given, only individuals in specified (virtual)
        subpopulations will be migrated where others will stay in their
        original subpopulation. Negative values are not allowed in this
        information field because they do not represent a valid
        destination subpopulation ID.  In the latter case, a migration
        matrix is used to randomly assign destination subpoulations to
        each individual. The elements in this matrix can be probabilities
        to migrate, proportions of individuals to migrate, or exact number
        of individuals to migrate.  By default, the migration matrix
        should have m by m elements if there are m subpopulations. Element
        (i, j) in this matrix represents migration probability, rate or
        count from subpopulation i to j. If subPops (length m) and/or
        toSubPops (length n) are given, the matrix should have m by n
        elements, corresponding to specified source and destination
        subpopulations. Subpopulations in subPops can be virtual
        subpopulations, which makes it possible to migrate, for example,
        males and females at different rates from a subpopulation. If a
        subpopulation in toSubPops does not exist, it will be created. In
        case that all individuals from a subpopulation are migrated, the
        empty subpopulation will be kept.  If migration is applied by
        probability, the row of the migration matrix corresponding to a
        source subpopulation is intepreted as probabilities to migrate to
        each destination subpopulation. Each individual's detination
        subpopulation is assigned randomly according to these
        probabilities. Note that the probability of staying at the present
        subpopulation is automatically calculated so the corresponding
        matrix elements are ignored.  If migration is applied by
        proportion, the row of the migration matrix corresponding to a
        source subpopulation is intepreted as proportions to migrate to
        each destination subpopulation. The number of migrants to each
        destination subpopulation is determined before random
        indidividuals are chosen to migrate.  If migration is applied by
        counts, the row of the migration matrix corresponding to a source
        subpopulation is intepreted as number of individuals to migrate to
        each detination subpopulation. The migrants are chosen randomly.
        This operator goes through all source (virtual) subpopulations and
        assign detination subpopulation of each individual to an
        information field. Unexpected results may happen if individuals
        migrate from overlapping virtual subpopulations.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            Migrator(rate=[], mode=BY_PROBABILITY, toSubPops=ALL_AVAIL,
              begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
              subPops=ALL_AVAIL, infoFields="migrate_to")
 
        Details:
 
            Create a Migrator that moves individuals from source (virtual)
            subpopulations subPops (default to migrate from all
            subpopulations) to destination subpopulations toSubPops (default
            to all subpopulations), according to existing values in an
            information field infoFields[0], or randomly according to a
            migration matrix rate. In the latter case, the size of the matrix
            should match the number of source and destination subpopulations.
            Depending on the value of parameter mode, elements in the
            migration matrix (rate) are interpreted as either the
            probabilities to migrate from source to destination subpopulations
            (mode = BY_PROBABILITY), proportions of individuals in the source
            (virtual) subpopulations to the destination subpopulations (mode =
            BY_PROPORTION), numbers of migrants in the source (virtual)
            subpopulations (mode = BY_COUNTS), or ignored completely (mode =
            BY_IND_INFO). In the last case, parameter subPops is respected
            (only individuals in specified (virtual) subpopulations will
            migrate) but toSubPops is ignored.  This operator is by default
            applied pre-mating (parameter stage). Please refer to operator
            BaseOperator for a detailed explanation for all parameters.
 
 
        """
        _simuPOP_baop.Migrator_swiginit(self,_simuPOP_baop.new_Migrator(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_Migrator
Migrator_swigregister = _simuPOP_baop.Migrator_swigregister
Migrator_swigregister(Migrator)
 
class SplitSubPops(BaseOperator):
    """
    Details:
 
        Split a given list of subpopulations according to either sizes of
        the resulting subpopulations, proportion of individuals, or an
        information field. The resulting subpopulations will have the same
        name as the original subpopulation.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            SplitSubPops(subPops=ALL_AVAIL, sizes=[], proportions=[],
              names=[], randomize=True, begin=0, end=-1, step=1, at=[],
              reps=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Split a list of subpopulations subPops into finer subpopulations.
            A single subpopulation is acceptable but virtual subpopulations
            are not allowed. All subpopulations will be split if subPops is
            not specified.  The subpopulations can be split in three ways:
            *   If parameter sizes is given, each subpopulation will be split
            into subpopulations with given size. The sizes should add up to
            the size of all orignal subpopulations.
            *   If parameter proportions is given, each subpopulation will be
            split into subpopulations with corresponding proportion of
            individuals. proportions should add up to 1.
            *   If an information field is given (parameter infoFields),
            individuals having the same value at this information field will
            be grouped into a subpopulation. The number of resulting
            subpopulations is determined by the number of distinct values at
            this information field. If parameter randomize is True (default),
            individuals will be randomized before a subpopulation is split.
            This is designed to remove artificial order of individuals
            introduced by, for example, some non- random mating schemes. Note
            that, however, the original individual order is not guaranteed
            even if this parameter is set to False.  Unless the last
            subpopulation is split, the indexes of existing subpopulations
            will be changed. If a subpopulation has a name, this name will
            become the name for all subpopulations separated from this
            subpopulation. Optionally, you can assign names to the new
            subpopulations using a list of names specified in parameter names.
            Because the same set of names will be used for all subpopulations,
            this parameter is not recommended when multiple subpopulations are
            split.  This operator is by default applied pre-mating (parameter
            stage). Please refer to operator BaseOperator for a detailed
            explanation for all parameters.
 
        Note:
 
            Unlike operator Migrator, this operator does not require an
            information field such as migrate_to.
 
 
        """
        _simuPOP_baop.SplitSubPops_swiginit(self,_simuPOP_baop.new_SplitSubPops(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_SplitSubPops
SplitSubPops_swigregister = _simuPOP_baop.SplitSubPops_swigregister
SplitSubPops_swigregister(SplitSubPops)
 
class MergeSubPops(BaseOperator):
    """
    Details:
 
        This operator merges subpopulations subPops to a single
        subpopulation. If subPops is ignored, all subpopulations will be
        merged. Virtual subpopulations are not allowed in subPops.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            MergeSubPops(subPops=ALL_AVAIL, name="", begin=0, end=-1,
              step=1, at=[], reps=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create an operator that merges subpopulations subPops to a single
            subpopulation. If subPops is not given, all subpopulations will be
            merged. The merged subpopulation will take the name of the first
            subpopulation being merged unless a new name is given.  This
            operator is by default applied pre-mating (parameter stage).
            Please refer to operator BaseOperator for a detailed explanation
            for all parameters.
 
 
        """
        _simuPOP_baop.MergeSubPops_swiginit(self,_simuPOP_baop.new_MergeSubPops(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_MergeSubPops
MergeSubPops_swigregister = _simuPOP_baop.MergeSubPops_swigregister
MergeSubPops_swigregister(MergeSubPops)
 
class ResizeSubPops(BaseOperator):
    """
    Details:
 
        This operator resizes subpopulations to specified sizes.
        individuals are added or removed depending on the new
        subpopulation sizes.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            ResizeSubPops(subPops=ALL_AVAIL, sizes=[], proportions=[],
              propagate=True, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
              infoFields=[])
 
        Details:
 
            Resize given subpopulations subPops to new sizes size, or sizes
            proportional to original sizes (parameter proportions). All
            subpopulations will be resized if subPops is not specified. If the
            new size of a subpopulation is smaller than its original size,
            extra individuals will be removed. If the new size is larger, new
            individuals with empty genotype will be inserted, unless parameter
            propagate is set to True (default). In this case, existing
            individuals will be copied sequentially, and repeatedly if needed.
            This operator is by default applied pre-mating (parameter stage).
            Please refer to operator BaseOperator for a detailed explanation
            for all parameters.
 
 
        """
        _simuPOP_baop.ResizeSubPops_swiginit(self,_simuPOP_baop.new_ResizeSubPops(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_ResizeSubPops
ResizeSubPops_swigregister = _simuPOP_baop.ResizeSubPops_swigregister
ResizeSubPops_swigregister(ResizeSubPops)
 
class BaseMutator(BaseOperator):
    """
    Details:
 
        Class mutator is the base class of all mutators. It handles all
        the work of picking an allele at specified loci from certain
        (virtual) subpopulation with certain probability, and calling a
        derived mutator to mutate the allele. Alleles can be changed
        before and after mutation if existing allele numbers do not match
        those of a mutation model.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            BaseMutator(rates=[], loci=ALL_AVAIL, mapIn=[], mapOut=[],
              context=0, output=">", begin=0, end=-1, step=1, at=[],
              reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            A mutator mutates alleles from one state to another with given
            probability. This base mutator does not perform any mutation but
            it defines common behaviors of all mutators.  By default, a
            mutator mutates all alleles in all populations of a simulator at
            all generations. A number of parameters can be used to restrict
            mutations to certain generations (parameters begin, end, step and
            at), replicate populations (parameter rep), (virtual)
            subpopulations (parameter subPops) and loci (parameter loci).
            Parameter loci can be a list of loci indexes, names or ALL_AVAIL.
            Please refer to class BaseOperator for a detailed explanation of
            these parameters.  Parameter rate or its equivalence specifies the
            probability that a a mutation event happens. The exact form and
            meaning of rate is mutator-specific. If a single rate is
            specified, it will be applied to all loci. If a list of mutation
            rates are given, they will be applied to each locus specified in
            parameter loci. Note that not all mutators allow specification of
            multiple mutation rate, especially when the mutation rate itself
            is a list or matrix.  Alleles at a locus are non-negative numbers
            0, 1, ... up to the maximum allowed allele for the loaded module
            (1 for binary, 255 for short and 65535 for long modules). Whereas
            some general mutation models treat alleles as numbers, other
            models assume specific interpretation of alleles. For example, an
            AcgtMutator assumes alleles 0, 1, 2 and 3 as nucleotides A, C, G
            and T. Using a mutator that is incompatible with your simulation
            will certainly yield erroneous results.  If your simulation
            assumes different alleles with a mutation model, you can map an
            allele to the allele used in the model and map the mutated allele
            back. This is achieved using a mapIn list with its i-th item being
            the corresponding allele of real allele i, and a mapOut list with
            its i-th item being the real allele of allele i assumed in the
            model. For example mapIn=[0, 0, 1] and mapOut=[1, 2] would allow
            the use of a SNPMutator to mutate between alleles 1 and 2, instead
            of 0 and 1. Parameters mapIn and mapOut also accept a user-defined
            Python function that returns a corresponding allele for a given
            allele. This allows easier mapping between a large number of
            alleles and advanced models such as random emission of alleles.
            Some mutation models are context dependent. Namely, how an allele
            mutates will depend on its adjecent alleles. Whereas most simuPOP
            mutators are context independent, some of them accept a parameter
            context which is the number of alleles to the left and right of
            the mutated allele. For example context=1 will make the alleles to
            the immediate left and right to a mutated allele available to a
            mutator. These alleles will be mapped in if parameter mapIn is
            defined. How exactly a mutator makes use of these information is
            mutator dependent.
 
 
        """
        _simuPOP_baop.BaseMutator_swiginit(self,_simuPOP_baop.new_BaseMutator(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_BaseMutator
BaseMutator_swigregister = _simuPOP_baop.BaseMutator_swigregister
BaseMutator_swigregister(BaseMutator)
 
class MatrixMutator(BaseMutator):
    """
    Details:
 
        A matrix mutator mutates alleles 0, 1, ..., n-1 using a n by n
        matrix, which specifies the probability at which each allele
        mutates to another. Conceptually speaking, this mutator goes
        through all mutable allele and mutate it to another state
        according to probabilities in the corresponding row of the rate
        matrix. Only one mutation rate matrix can be specified which will
        be used for all specified loci. #
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            MatrixMutator(rate, loci=ALL_AVAIL, mapIn=[], mapOut=[],
              output=">", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
              subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a mutator that mutates alleles 0, 1, ..., n-1 using a n by
            n matrix rate. Item (i,j) of this matrix specifies the probability
            at which allele i mutates to allele j. Diagnal items (i, i) are
            ignored because they are automatically determined by other
            probabilities. Only one mutation rate matrix can be specified
            which will be used for all loci in the applied population, or loci
            specified by parameter loci. If alleles other than 0, 1, ..., n-1
            exist in the population, they will not be mutated although a
            warning message will be given if debugging code DBG_WARNING is
            turned on. Please refer to classes mutator and BaseOperator for
            detailed explanation of other parameters.
 
 
        """
        _simuPOP_baop.MatrixMutator_swiginit(self,_simuPOP_baop.new_MatrixMutator(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_MatrixMutator
MatrixMutator_swigregister = _simuPOP_baop.MatrixMutator_swigregister
MatrixMutator_swigregister(MatrixMutator)
 
class KAlleleMutator(BaseMutator):
    """
    Details:
 
        This mutator implements a k-allele mutation model that assumes k
        allelic states (alleles 0, 1, 2, ..., k-1) at each locus. When a
        mutation event happens, it mutates an allele to any other states
        with equal probability.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            KAlleleMutator(k, rates=[], loci=ALL_AVAIL, mapIn=[], mapOut=[],
              output=">", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
              subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a k-allele mutator that mutates alleles to one of the other
            k-1 alleles with equal probability. This mutator by default
            applies to all loci unless parameter loci is specified. A single
            mutation rate will be used for all loci if a single value of
            parameter rates is given. Otherwise, a list of mutation rates can
            be specified for each locus in parameter loci. If the mutated
            allele is larger than or equal to k, it will not be mutated. A
            warning message will be displayed if debugging code DBG_WARNING is
            turned on. Please refer to classes mutator and BaseOperator for
            descriptions of other parameters.
 
 
        """
        _simuPOP_baop.KAlleleMutator_swiginit(self,_simuPOP_baop.new_KAlleleMutator(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_KAlleleMutator
KAlleleMutator_swigregister = _simuPOP_baop.KAlleleMutator_swigregister
KAlleleMutator_swigregister(KAlleleMutator)
 
class StepwiseMutator(BaseMutator):
    """
    Details:
 
        A stepwise mutation model treats alleles at a locus as the number
        of tandem repeats of microsatellite or minisatellite markers. When
        a mutation event happens, the number of repeats (allele) either
        increase or decrease. A standard stepwise mutation model increases
        of decreases an allele by 1 with equal probability. More complex
        models (generalized stepwise mutation model) are also allowed.
        Note that an allele cannot be mutated beyond boundaries (0 and
        maximum allowed allele).
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            StepwiseMutator(rates=[], loci=ALL_AVAIL, incProb=0.5,
              maxAllele=0, mutStep=[], mapIn=[], mapOut=[], output=">",
              begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
              subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a stepwise mutation mutator that mutates an allele by
            increasing or decreasing it. This mutator by default applies to
            all loci unless parameter loci is specified. A single mutation
            rate will be used for all loci if a single value of parameter
            rates is given. Otherwise, a list of mutation rates can be
            specified for each locus in parameter loci.  When a mutation event
            happens, this operator increases or decreases an allele by mutStep
            steps. Acceptable input of parameter mutStep include
            *   A number: This is the default mode with default value 1.
            *   (GEOMETRIC_DISTRIBUTION, p): The number of steps follows a a
            geometric distribution with parameter p.
            *   A Python function: This user defined function accepts the
            allele being mutated and return the steps to mutate. The mutation
            process is usually neutral in the sense that mutating up and down
            is equally likely. You can adjust parameter incProb to change this
            behavior.  If you need to use other generalized stepwise mutation
            models, you can implement them using a PyMutator. If performance
            becomes a concern, I may add them to this operator if provided
            with a reliable reference.
 
 
        """
        _simuPOP_baop.StepwiseMutator_swiginit(self,_simuPOP_baop.new_StepwiseMutator(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_StepwiseMutator
StepwiseMutator_swigregister = _simuPOP_baop.StepwiseMutator_swigregister
StepwiseMutator_swigregister(StepwiseMutator)
 
class PyMutator(BaseMutator):
    """
    Details:
 
        This hybrid mutator accepts a Python function that determines how
        to mutate an allele when an mutation event happens.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            PyMutator(rates=[], loci=ALL_AVAIL, func=None, context=0,
              mapIn=[], mapOut=[], output=">", begin=0, end=-1, step=1, at=[],
              reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a hybrid mutator that uses a user-provided function to
            mutate an allele when a mutation event happens. This function
            (parameter func) accepts the allele to be mutated as parameter
            allele and optional array of alleles as parameter context, which
            are context alleles the left and right of the mutated allele.
            Invalid context alleles (e.g. left allele to the first locus of a
            chromosome) will be marked by -1. The return value of this
            function will be used to mutate the passed allele. The passed,
            returned and context alleles might be altered if parameter mapIn
            and mapOut are used. This mutator by default applies to all loci
            unless parameter loci is specified. A single mutation rate will be
            used for all loci if a single value of parameter rates is given.
            Otherwise, a list of mutation rates can be specified for each
            locus in parameter loci. Please refer to classes mutator and
            BaseOperator for descriptions of other parameters.
 
 
        """
        _simuPOP_baop.PyMutator_swiginit(self,_simuPOP_baop.new_PyMutator(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_PyMutator
PyMutator_swigregister = _simuPOP_baop.PyMutator_swigregister
PyMutator_swigregister(PyMutator)
 
class MixedMutator(BaseMutator):
    """
    Details:
 
        This mixed mutator accepts a list of mutators and use one of them
        to mutate an allele when an mutation event happens.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            MixedMutator(rates=[], loci=ALL_AVAIL, mutators=[], prob=[],
              mapIn=[], mapOut=[], context=0, output=">", begin=0, end=-1,
              step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a mutator that randomly chooses one of the specified
            mutators to mutate an allele when a mutation event happens. The
            mutators are choosen according to a list of probabilities ( prob)
            that should add up to 1. The passed and returned alleles might be
            changed if parameters mapIn and mapOut are used. Most parameters,
            including loci, mapIn, mapOut, rep, and subPops of mutators
            specified in parameter mutators are ignored. This mutator by
            default applies to all loci unless parameter loci is specified.
            Please refer to classes mutator and BaseOperator for descriptions
            of other parameters.
 
 
        """
        _simuPOP_baop.MixedMutator_swiginit(self,_simuPOP_baop.new_MixedMutator(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_MixedMutator
MixedMutator_swigregister = _simuPOP_baop.MixedMutator_swigregister
MixedMutator_swigregister(MixedMutator)
 
class ContextMutator(BaseMutator):
    """
    Details:
 
        This context-dependent mutator accepts a list of mutators and use
        one of them to mutate an allele depending on the context of the
        mutated allele.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            ContextMutator(rates=[], loci=ALL_AVAIL, mutators=[],
              contexts=[], mapIn=[], mapOut=[], output=">", begin=0, end=-1,
              step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a mutator that choose one of the specified mutators to
            mutate an allele when a mutation event happens. The mutators are
            choosen according to the context of the mutated allele, which is
            specified as a list of alleles to the left and right of an allele
            ( contexts). For example, contexts=[(0,0), (0,1), (1,1)] indicates
            which mutators should be used to mutate allele X in the context of
            0X0, 0X1, and 1X1. A context can include more than one alleles at
            both left and right sides of a mutated allele but all contexts
            should have the same (even) number of alleles. If an allele does
            not have full context (e.g. when a locus is the first locus on a
            chromosome), unavailable alleles will be marked as -1. There
            should be a mutator for each context but an additional mutator can
            be specified as the default mutator for unmatched contexts. If
            parameters mapIn is specified, both mutated allele and its context
            alleles will be mapped. Most parameters, including loci, mapIn,
            mapOut, rep, and subPops of mutators specified in parameter
            mutators are ignored. This mutator by default applies to all loci
            unless parameter loci is specified. Please refer to classes
            mutator and BaseOperator for descriptions of other parameters.
 
 
        """
        _simuPOP_baop.ContextMutator_swiginit(self,_simuPOP_baop.new_ContextMutator(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_ContextMutator
ContextMutator_swigregister = _simuPOP_baop.ContextMutator_swigregister
ContextMutator_swigregister(ContextMutator)
 
class PointMutator(BaseOperator):
    """
    Details:
 
        A point mutator is different from all other mutators because
        mutations in this mutator do not happen randomly. Instead, it
        happens to specific loci and mutate an allele to a specific state,
        regardless of its original state. This mutator is usually used to
        introduce a mutant to a population.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            PointMutator(loci, allele, ploidy=0, inds=[], output=">",
              begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=0,
              infoFields=[])
 
        Details:
 
            Create a point mutator that mutates alleles at specified loci to a
            given allele of individuals inds. If there are multiple alleles at
            a locus (e.g. individuals in a diploid population), only the first
            allele is mutated unless indexes of alleles are listed in
            parameter ploidy. This operator is by default applied to
            individuals in the first subpopulation but you can apply it to a
            different or more than one (virtual) subpopulations using
            parameter *subPops* (``AllAvail`` is also accepted). Please refer
            to class BaseOperator for detailed descriptions of other
            parameters.
 
 
        """
        _simuPOP_baop.PointMutator_swiginit(self,_simuPOP_baop.new_PointMutator(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_PointMutator
PointMutator_swigregister = _simuPOP_baop.PointMutator_swigregister
PointMutator_swigregister(PointMutator)
 
class GenoTransmitter(BaseOperator):
    """
    Details:
 
        This during mating operator is the base class of all genotype
        transmitters. It is made available to users because it provides a
        few member functions that can be used by derived transmitters, and
        by customized Python during mating operators.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            GenoTransmitter(output="", begin=0, end=-1, step=1, at=[],
              reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a base genotype transmitter.
 
 
        """
        _simuPOP_baop.GenoTransmitter_swiginit(self,_simuPOP_baop.new_GenoTransmitter(*args, **kwargs))
    def clearChromosome(self, *args, **kwargs):
        """
        Usage:
 
            x.clearChromosome(ind, ploidy, chrom)
 
        Details:
 
            Clear (set alleles to zero) chromosome chrom on the ploidy-th
            homologous set of chromosomes of individual ind. It is equivalent
            to ind.setGenotype([0], ploidy, chrom).
 
 
        """
        return _simuPOP_baop.GenoTransmitter_clearChromosome(self, *args, **kwargs)
 
    def copyChromosome(self, *args, **kwargs):
        """
        Usage:
 
            x.copyChromosome(parent, parPloidy, offspring, ploidy, chrom)
 
        Details:
 
            Transmit chromosome chrom on the parPloidy set of homologous
            chromosomes from parent to the ploidy set of homologous
            chromosomes of offspring. It is equivalent to
            offspring.setGenotype(parent.genotype(parPloidy, chrom), polidy,
            chrom).
 
 
        """
        return _simuPOP_baop.GenoTransmitter_copyChromosome(self, *args, **kwargs)
 
    def copyChromosomes(self, *args, **kwargs):
        """
        Usage:
 
            x.copyChromosomes(parent, parPloidy, offspring, ploidy)
 
        Details:
 
            Transmit the parPloidy set of homologous chromosomes from parent
            to the ploidy set of homologous chromosomes of offspring.
            Customized chromosomes are not copied. It is equivalent to
            offspring.setGenotype(parent.genotype(parPloidy), ploidy).
 
 
        """
        return _simuPOP_baop.GenoTransmitter_copyChromosomes(self, *args, **kwargs)
 
    __swig_destroy__ = _simuPOP_baop.delete_GenoTransmitter
GenoTransmitter.clearChromosome = new_instancemethod(_simuPOP_baop.GenoTransmitter_clearChromosome,None,GenoTransmitter)
GenoTransmitter.copyChromosome = new_instancemethod(_simuPOP_baop.GenoTransmitter_copyChromosome,None,GenoTransmitter)
GenoTransmitter.copyChromosomes = new_instancemethod(_simuPOP_baop.GenoTransmitter_copyChromosomes,None,GenoTransmitter)
GenoTransmitter_swigregister = _simuPOP_baop.GenoTransmitter_swigregister
GenoTransmitter_swigregister(GenoTransmitter)
 
class CloneGenoTransmitter(GenoTransmitter):
    """
    Details:
 
        This during mating operator copies parental genotype directly to
        offspring. This operator works for all mating schemes when one or
        two parents are involved. If both parents are passed, maternal
        genotype are copied. In addition to genotypes on all non-
        customized or specified chromosomes, sex and information fields
        are by default also coped copied from parent to offspring.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            CloneGenoTransmitter(output="", chroms=ALL_AVAIL, begin=0,
              end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL,
              infoFields=ALL_AVAIL)
 
        Details:
 
            Create a clone genotype transmitter (a during-mating operator)
            that copies genotypes from parents to offspring. If two parents
            are specified, genotypes are copied maternally. After genotype
            transmission, offspring sex is copied from parental sex even if
            sex has been determined by an offspring generator. All or
            specified information fields (parameter infoFields, default to
            ALL_AVAIL) will also be copied from parent to offspring.
            Parameters subPops is ignored. This operator by default copies
            genotypes on all autosome and sex chromosomes (excluding
            customized chromosomes), unless a parameter chroms is used to
            specify which chromosomes to copy.
 
 
        """
        _simuPOP_baop.CloneGenoTransmitter_swiginit(self,_simuPOP_baop.new_CloneGenoTransmitter(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_CloneGenoTransmitter
CloneGenoTransmitter_swigregister = _simuPOP_baop.CloneGenoTransmitter_swigregister
CloneGenoTransmitter_swigregister(CloneGenoTransmitter)
 
class MendelianGenoTransmitter(GenoTransmitter):
    """
    Details:
 
        This Mendelian offspring generator accepts two parents and pass
        their genotypes to an offspring following Mendel's laws. Sex
        chromosomes are handled according to the sex of the offspring,
        which is usually determined in advance by an offspring generator.
        Customized chromosomes are not handled.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            MendelianGenoTransmitter(output="", begin=0, end=-1, step=1,
              at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a Mendelian genotype transmitter (a during-mating operator)
            that transmits genotypes from parents to offspring following
            Mendel's laws. Autosomes and sex chromosomes are handled but
            customized chromosomes are ignored. Parameters subPops and
            infoFields are ignored.
 
 
        """
        _simuPOP_baop.MendelianGenoTransmitter_swiginit(self,_simuPOP_baop.new_MendelianGenoTransmitter(*args, **kwargs))
    def transmitGenotype(self, *args, **kwargs):
        """
        Usage:
 
            x.transmitGenotype(parent, offspring, ploidy)
 
        Details:
 
            Transmit genotype from parent to offspring, and fill the ploidy
            homologous set of chromosomes. This function does not set
            genotypes of customized chromosomes and handles sex chromosomes
            properly, according to offspring sex and ploidy.
 
 
        """
        return _simuPOP_baop.MendelianGenoTransmitter_transmitGenotype(self, *args, **kwargs)
 
    __swig_destroy__ = _simuPOP_baop.delete_MendelianGenoTransmitter
MendelianGenoTransmitter.transmitGenotype = new_instancemethod(_simuPOP_baop.MendelianGenoTransmitter_transmitGenotype,None,MendelianGenoTransmitter)
MendelianGenoTransmitter_swigregister = _simuPOP_baop.MendelianGenoTransmitter_swigregister
MendelianGenoTransmitter_swigregister(MendelianGenoTransmitter)
 
class SelfingGenoTransmitter(MendelianGenoTransmitter):
    """
    Details:
 
        A genotype transmitter (during-mating operator) that transmits
        parental genotype of a parent through self-fertilization. That is
        to say, the offspring genotype is formed according to Mendel's
        laws, only that a parent serves as both maternal and paternal
        parents.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            SelfingGenoTransmitter(output="", begin=0, end=-1, step=1,
              at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a self-fertilization genotype transmitter that transmits
            genotypes of a parent to an offspring through self-fertilization.
            Cutsomized chromosomes are not handled. Parameters subPops and
            infoFields are ignored.
 
 
        """
        _simuPOP_baop.SelfingGenoTransmitter_swiginit(self,_simuPOP_baop.new_SelfingGenoTransmitter(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_SelfingGenoTransmitter
SelfingGenoTransmitter_swigregister = _simuPOP_baop.SelfingGenoTransmitter_swigregister
SelfingGenoTransmitter_swigregister(SelfingGenoTransmitter)
 
class HaplodiploidGenoTransmitter(MendelianGenoTransmitter):
    """
    Details:
 
        A genotype transmitter (during-mating operator) for haplodiploid
        populations. The female parent is considered as diploid and the
        male parent is considered as haploid (only the first homologous
        copy is valid). If the offspring is FEMALE, she will get a random
        copy of two homologous chromosomes of her mother, and get the only
        paternal copy from her father. If the offspring is MALE, he will
        only get a set of chromosomes from his mother.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            HaplodiploidGenoTransmitter(output="", begin=0, end=-1, step=1,
              at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a haplodiploid genotype transmitter (during-mating
            operator) that transmit parental genotypes from parents to
            offspring in a haplodiploid population. Parameters subPops and
            infoFields are ignored.
 
 
        """
        _simuPOP_baop.HaplodiploidGenoTransmitter_swiginit(self,_simuPOP_baop.new_HaplodiploidGenoTransmitter(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_HaplodiploidGenoTransmitter
HaplodiploidGenoTransmitter_swigregister = _simuPOP_baop.HaplodiploidGenoTransmitter_swigregister
HaplodiploidGenoTransmitter_swigregister(HaplodiploidGenoTransmitter)
 
class MitochondrialGenoTransmitter(GenoTransmitter):
    """
    Details:
 
        This geno transmitter assumes that the first homologous copy of
        several (or all) Customized chromosomes are copies of
        mitochondrial chromosomes. It transmits these chromosomes randomly
        from the female parent to offspring. If this transmitter is
        applied to populations with more than one homologous copies of
        chromosomes, it transmits the first homologous copy of chromosomes
        and clears alleles (set to zero) on other homologous copies.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            MitochondrialGenoTransmitter(output="", chroms=ALL_AVAIL,
              begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
              subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Createa a mitochondrial genotype transmitter that treats all
            Customized chromosomes, or a list of chromosomes specified by
            chroms, as human mitochondrial chromosomes. These chromosomes
            should have the same length and the same number of loci. This
            operator transmits these chromosomes randomly from the female
            parent to offspring of both sexes.
 
 
        """
        _simuPOP_baop.MitochondrialGenoTransmitter_swiginit(self,_simuPOP_baop.new_MitochondrialGenoTransmitter(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_MitochondrialGenoTransmitter
MitochondrialGenoTransmitter_swigregister = _simuPOP_baop.MitochondrialGenoTransmitter_swigregister
MitochondrialGenoTransmitter_swigregister(MitochondrialGenoTransmitter)
 
class Recombinator(GenoTransmitter):
    """
    Details:
 
        A genotype transmitter (during-mating operator) that transmits
        parental chromosomes to offspring, subject to recombination and
        gene conversion. This can be used to replace
        MendelianGenoTransmitter and SelfingGenoTransmitter. It does not
        work in haplodiploid populations, although a customized genotype
        transmitter that makes uses this operator could be defined. Please
        refer to the simuPOP user's guide or online cookbook for details.
        Recombination could be applied to all adjacent markers or after
        specified loci. Recombination rate between two adjacent markers
        could be specified directly, or calculated using physical distance
        between them. In the latter case, a recombination intensity is
        multiplied by physical distance between markers.  Gene conversion
        is interpreted as double-recombination events. That is to say, if
        a recombination event happens, it has a certain probability (can
        be 1) to become a conversion event, namely triggering another
        recombination event down the chromosome. The length of the
        converted chromosome can be controlled in a number of ways.
 
    Note:
 
        simuPOP does not assume any unit to loci positions so
        recombination intensity could be explained differntly (e.g. cM/Mb,
        Morgan/Mb) depending on your intepretation of loci positions. For
        example, if basepair is used for loci position, intensity=10^-8
        indicates 10^-8 per basepair, which is equivalent to 10^-2 per Mb
        or 1 cM/Mb. If Mb is used for physical positions, the same
        recombination intensity could be achieved by intensity=0.01.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            Recombinator(rates=[], intensity=-1, loci=ALL_AVAIL,
              convMode=NO_CONVERSION, output="", begin=0, end=-1, step=1,
              at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a Recombinator (a mendelian genotype transmitter with
            recombination and gene conversion) that passes genotypes from
            parents (or a parent in case of self-fertilization) to offspring.
            Recombination happens by default between all adjacent markers but
            can be limited to a given set of loci, which can be a list of loci
            indexes, names or ALL_AVAIL. Each locus in this list specifies a
            recombination point between the locus and the locus immediately
            before it. Loci that are the first locus on each chromosome are
            ignored.  If a single recombination rate (parameter rates) is
            specified, it will used for all loci (all loci or loci specified
            by parameter loci), regardless of physical distances between
            adjacent loci.  If a list of recombination rates are specified in
            rates, a parameter loci with the same length should also be
            specified. Different recombination rates can then be used after
            these loci (between specified loci and their immediate neighbor to
            the right).  A recombination intensity (intensity) can be used to
            specify recombination rates that are proportional to physical
            distances between adjacent markers. If the physical distance
            between two markers is d, the recombination rate between them will
            be intensity * d. No unit is assume for loci position and
            recombination intensity.  Gene conversion is controlled using
            parameter convMode, which can be
            *   NoConversion: no gene conversion (default).
            *   (NUM_MARKERS, prob, n): With probability prob, convert a fixed
            number (n) of markers if a recombination event happens.
            *   (GEOMETRIC_DISTRIBUTION, prob, p): With probability prob,
            convert a random number of markers if a recombination event
            happens. The number of markes converted follows a geometric
            distribution with probability p.
            *   (TRACT_LENGTH, prob, n): With probability prob, convert a
            region of fixed tract length (n) if a recombination event happens.
            The actual number of markers converted depends on loci positions
            of surrounding loci. The starting position of this tract is the
            middle of two adjacent markers. For example, if four loci are
            located at 0, 1, 2, 3 respectively, a conversion event happens
            between 0 and 1, with a tract length 2 will start at 0.5 and end
            at 2.5, covering the second and third loci.
            *   (EXPONENTIAL_DISTRIBUTION, prob, p): With probability prob,
            convert a region of random tract length if a recombination event
            happens. The distribution of tract length follows a exponential
            distribution with probability p. The actual number of markers
            converted depends on loci positions of surrounding loci. simuPOP
            uses this probabilistic model of gene conversion because when a
            recombination event happens, it may become a recombination event
            if the if the Holliday junction is resolved/repaired successfully,
            or a conversion event if the junction is not resolved/repaired.
            The probability, however, is more commonly denoted by the ratio of
            conversion to recombination events in the literature. This ratio
            varies greatly from study to study, ranging from 0.1 to 15 (Chen
            et al, Nature Review Genetics, 2007). This translate to
            0.1/0.9~0.1 to 15/16~0.94 of the gene conversion probability.  A
            Recombinator usually does not send any output. However, if an
            information field is given (parameter infoFields), this operator
            will treat this information field as an unique ID of parents and
            offspring and output all recombination events in the format of
            offspring_id parent_id starting_ploidy loc1 loc2 ... where
            starting_ploidy indicates which homologous copy genotype
            replication starts from (0 or 1), loc1, loc2 etc are loci after
            which recombination events happens. If there are multiple
            chromosomes on the genome, you will see a lot of (fake)
            recombination events because of independent segregation of
            chromosomes. Such a record will be generated for each set of
            homologous chromosomes so an diploid offspring will have two lines
            of output. Note that individual IDs need to be set (using a
            IdTagger operator) before this Recombinator is applied.
 
        Note:
 
            conversion tract length is usually short, and is estimated to be
            between 337 and 456 bp, with overall range between maybe 50 - 2500
            bp. This is usually not enough to convert, for example, two
            adjacent markers from the HapMap dataset.There is no recombination
            between sex chromosomes (Chromosomes X and Y), although
            recombination is possible between pesudoautosomal regions on these
            chromosomes. If such a feature is required, you will have to
            simulate the pesudoautosomal regions as separate chromosomes.
 
 
        """
        _simuPOP_baop.Recombinator_swiginit(self,_simuPOP_baop.new_Recombinator(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_Recombinator
    def transmitGenotype(self, *args, **kwargs):
        """
        Usage:
 
            x.transmitGenotype(parent, offspring, ploidy)
 
        Details:
 
            This function transmits genotypes from a parent to the ploidy-th
            homologous set of chromosomes of an offspring. It can be used, for
            example, by a customized genotype transmitter to use sex-specific
            recombination rates to transmit parental genotypes to offspring.
 
 
        """
        return _simuPOP_baop.Recombinator_transmitGenotype(self, *args, **kwargs)
 
Recombinator.transmitGenotype = new_instancemethod(_simuPOP_baop.Recombinator_transmitGenotype,None,Recombinator)
Recombinator_swigregister = _simuPOP_baop.Recombinator_swigregister
Recombinator_swigregister(Recombinator)
 
class BaseSelector(BaseOperator):
    """
    Details:
 
        This class is the base class to all selectors, namely operators
        that perform natural selection. It defines a common interface for
        all selectors.  A selector can be applied before mating or during
        mating. If a selector is applied to one or more (virtual)
        subpopulations of a parental population before mating, it sets
        individual fitness values to all involved parents to an
        information field (default to fitness). When a mating scheme that
        supports natural selection is applied to the parental population,
        it will select parents with probabilities that are proportional to
        individual fitness stored in an information field (default to
        fitness). Individual fitness is considered relative fitness and
        can be any non-negative number. This simple process has some
        implications that can lead to advanced usages of natural selection
        in simuPOP:
        *   It is up to the mating scheme how to handle individual
        fitness. Some mating schemes do not support natural selection at
        all.
        *   A mating scheme performs natural selection according to
        fitness values stored in an information field. It does not care
        how these values are set. For example, fitness values can be
        inherited from a parent using a tagging operator, or set directly
        using a Python operator.
        *   A mating scheme can treat any information field as fitness
        field. If an specified information field does not exist, or if all
        individuals have the same fitness values (e.g. 0), the mating
        scheme selects parents randomly.
        *   Multiple selectors can be applied to the same parental
        generation. individual fitness is determined by the last fitness
        value it is assigned.
        *   A selection operator can be applied to virtual subpopulations
        and set fitness values only to part of the individuals.
        *   individuals with zero fitness in a subpopulation with anyone
        having a positive fitness value will not be selected to produce
        offspring. This can sometimes lead to unexpected behaviors. For
        example, if you only assign fitness value to part of the
        individuals in a subpopulation, the rest of them will be
        effectively discarded. If you migrate individuals with valid
        fitness values to a subpopulation with all individuals having zero
        fitness, the migrants will be the only mating parents.
        *   It is possible to assign multiple fitness values to different
        information fields so that different homogeneous mating schemes
        can react to different fitness schemes when they are used in a
        heterogeneous mating scheme.
        *   You can apply a selector to the offspring generation using the
        postOps parameter of Simulator.evolve, these fitness values will
        be used when the offspring generation becomes parental generation
        in the next generation. Alternatively, a selector can be used as a
        during mating operator. In this case, it caculates fitness value
        for each offspring which will be treated as absolute fitness,
        namely the probability for each offspring to survive. This process
        uses the fact that an individual will be discarded when any of the
        during mating operators returns False. It is important to remember
        that:
        *   individual fitness needs to be between 0 and 1 in this case.
        *   This method applies natural selection to offspring instead of
        parents. These two implementation can be identical or different
        depending on the mating scheme used.
        *   Seleting offspring is less efficient than the selecting
        parents, especially when fitness values are low.
        *   Parameter subPops are applied to the offspring population and
        is used to judge if an operator should be applied. It thus does
        not make sense to apply a selector to a virtual subpopulation with
        affected individuals.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            BaseSelector(output="", begin=0, end=-1, step=1, at=[],
              reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=ALL_AVAIL)
 
        Details:
 
            Create a base selector object. This operator should not be created
            directly.
 
 
        """
        _simuPOP_baop.BaseSelector_swiginit(self,_simuPOP_baop.new_BaseSelector(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_BaseSelector
BaseSelector_swigregister = _simuPOP_baop.BaseSelector_swigregister
BaseSelector_swigregister(BaseSelector)
 
class MapSelector(BaseSelector):
    """
    Details:
 
        This selector assigns individual fitness values using a user-
        specified dictionary. This operator can be applied to populations
        with arbitrary number of homologous chromosomes.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            MapSelector(loci, fitness, begin=0, end=-1, step=1, at=[],
              reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=ALL_AVAIL)
 
        Details:
 
            Create a selector that assigns individual fitness values using a
            dictionary fitness with genotype at loci as keys, and fitness as
            values. Parameter loci can be a list of indexes, loci names or
            ALL_AVAIL. For each individual (parents if this operator is
            applied before mating, and offspring if this operator is applied
            during mating), genotypes at loci are collected one by one (e.g.
            p0_loc0, p1_loc0, p0_loc1, p1_loc1... for a diploid individual)
            and are looked up in the dictionary. If a genotype cannot be
            found, it will be looked up again without phase information (e.g.
            (1,0) will match key (0,1)). If the genotype still can not be
            found, a ValueError will be raised. This operator supports sex
            chromosomes and haplodiploid populations. In these cases, only
            valid genotypes should be used to generator the dictionary keys.
 
 
        """
        _simuPOP_baop.MapSelector_swiginit(self,_simuPOP_baop.new_MapSelector(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_MapSelector
MapSelector_swigregister = _simuPOP_baop.MapSelector_swigregister
MapSelector_swigregister(MapSelector)
 
class MaSelector(BaseSelector):
    """
    Details:
 
        This operator is called a 'multi-allele' selector because it
        groups multiple alleles into two groups: wildtype and non-wildtype
        alleles. Alleles in each allele group are assumed to have the same
        effect on individual fitness. If we denote all wildtype alleles as
        A, and all non-wildtype alleles a, this operator assign individual
        fitness according to genotype AA, Aa, aa in the diploid case, and
        A and a in the haploid case.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            MaSelector(loci, fitness, wildtype=0, begin=0, end=-1, step=1,
              at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=ALL_AVAIL)
 
        Details:
 
            Creates a multi-allele selector that groups multiple alleles into
            a wildtype group (with alleles wildtype, default to [0]), and a
            non-wildtype group. A list of fitness values is specified through
            parameter fitness, for genotypes at one or more loci. Parameter
            loci can be a list of indexes, loci names or ALL_AVAIL. If we
            denote wildtype alleles using capital letters A, B ... and non-
            wildtype alleles using small letters a, b ..., the fitness values
            should be for
            *   genotypes A and a for the haploid single-locus case,
            *   genotypes AB, Ab, aB and bb for haploid two=locus cases,
            *   genotypes AA, Aa and aa for diploid single-locus cases,
            *   genotypes AABB, AABb, AAbb, AaBB, AaBb, Aabb, aaBB, aaBb, and
            aabb for diploid two-locus cases,
            *   and in general 2**n for diploid and 3**n for haploid cases if
            there are n loci. This operator does not support haplodiploid
            populations and sex chromosomes.
 
 
        """
        _simuPOP_baop.MaSelector_swiginit(self,_simuPOP_baop.new_MaSelector(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_MaSelector
MaSelector_swigregister = _simuPOP_baop.MaSelector_swigregister
MaSelector_swigregister(MaSelector)
 
class MlSelector(BaseSelector):
    """
    Details:
 
        This selector is created by a list of selectors. When it is
        applied to an individual, it applies these selectors to the
        individual, obtain a list of fitness values, and compute a
        combined fitness value from them. ADDITIVE, multiplicative, and a
        heterogeneour multi-locus model are supported.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            MlSelector(ops, mode=MULTIPLICATIVE, begin=0, end=-1, step=1,
              at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=ALL_AVAIL)
 
        Details:
 
            Create a multiple-locus selector from a list selection operator
            selectors. When this operator is applied to an individual (parents
            when used before mating and offspring when used during mating), it
            applies these operators to the individual and obtain a list of
            (usually single-locus) fitness values. These fitness values are
            combined to a single fitness value using
            *   Prod(f_i), namely the product of individual fitness if mode =
            MULTIPLICATIVE,
            *   1-sum(1 - f_i) if mode = ADDITIVE,
            *   1-Prod(1 - f_i) if mode = HETEROGENEITY, and
            *   exp(- sum(1 - f_i)) if mode = EXPONENTIAL, zero will be
            returned if the combined fitness value is less than zero.
 
 
        """
        _simuPOP_baop.MlSelector_swiginit(self,_simuPOP_baop.new_MlSelector(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_MlSelector
MlSelector_swigregister = _simuPOP_baop.MlSelector_swigregister
MlSelector_swigregister(MlSelector)
 
class PySelector(BaseSelector):
    """
    Details:
 
        This selector assigns fitness values by calling a user provided
        function. It accepts a list of loci (parameter loci) and a Python
        function func which should be defined with one or more of
        parameters geno, gen, ind, pop or names of information fields.
        Parameter loci can be a list of loci indexes, names or ALL_AVAIL.
        When this operator is applied to a population, it passes genotypes
        at specified loci, generation number, a reference to an
        individual, a reference to the current population (usually used to
        retrieve population variable), and values at specified information
        fields to respective parameters of this function. The returned
        value will be used to determine the fitness of each individual.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            PySelector(func, loci=[], begin=0, end=-1, step=1, at=[],
              reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=ALL_AVAIL)
 
        Details:
 
            Create a Python hybrid selector that passes genotype at specified
            loci, values at specified information fields (if requested) and a
            generation number to a user-defined function func. The return
            value will be treated as individual fitness.
 
 
        """
        _simuPOP_baop.PySelector_swiginit(self,_simuPOP_baop.new_PySelector(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_PySelector
PySelector_swigregister = _simuPOP_baop.PySelector_swigregister
PySelector_swigregister(PySelector)
 
class BaseQuanTrait(BaseOperator):
    """
    Details:
 
        A quantitative trait in simuPOP is simply an information field. A
        quantitative trait model simply assigns values to one or more
        information fields (called trait fields) of each individual
        according to its genetic (genotype) and environmental (information
        field) factors. It can be applied at any stage of an evolutionary
        cycle. If a quantitative trait operator is applied before or after
        mating, it will set the trait fields of all parents and offspring.
        If it is applied during mating, it will set the trait fields of
        each offspring.  When a quantitative trait operator is applied to
        a population, it is only applied to the current generation. You
        can, however, use parameter ancGen=-1 to set the trait field of
        all ancestral generations, or a generation index to apply to only
        ancestral generation younger than ancGen. Note that this parameter
        is ignored if the operator is applied during mating.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            BaseQuanTrait(ancGens=UNSPECIFIED, begin=0, end=-1, step=1,
              at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a base quantitative trait operator. This operator assigns
            one or more quantitative traits to trait fields in the present
            generation (default). If ALL_AVAIL or a list of ancestral
            generations are specified, this operator will be applied to
            individuals in these generations as well. A quantitative trait
            operator can be applied to specified (virtual) subpopulations
            (parameter subPops) and replicates (parameter reps).
 
 
        """
        _simuPOP_baop.BaseQuanTrait_swiginit(self,_simuPOP_baop.new_BaseQuanTrait(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_BaseQuanTrait
BaseQuanTrait_swigregister = _simuPOP_baop.BaseQuanTrait_swigregister
BaseQuanTrait_swigregister(BaseQuanTrait)
 
class PyQuanTrait(BaseQuanTrait):
    """
    Details:
 
        This quantitative trait operator assigns a trait field by calling
        a user provided function. It accepts a list of loci (parameter
        loci), and a Python function func which should be defined with one
        or more of parameters geno, gen, ind, or names of information
        fields. When this operator is applied to a population, it passes
        genotypes at specified loci, generation number, a reference to an
        individual, and values at specified information fields to
        respective parameters of this function. The return values will be
        assigned to specified trait fields.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            PyQuanTrait(func, loci=[], ancGens=ALL_AVAIL, begin=0, end=-1,
              step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a Python hybrid quantitative trait operator that passes
            genotype at specified loci, optional values at specified
            information fields (if requested), and an optional generation
            number to a user-defined function func. Parameter loci can be a
            list of loci indexes, names, or ALL_AVAIL. The return value will
            be assigned to specified trait fields (infoField). If only one
            trait field is specified, a number or a sequence of one element is
            acceptable. Otherwise, a sequence of values will be accepted and
            be assigned to each trait field.
 
 
        """
        _simuPOP_baop.PyQuanTrait_swiginit(self,_simuPOP_baop.new_PyQuanTrait(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_PyQuanTrait
PyQuanTrait_swigregister = _simuPOP_baop.PyQuanTrait_swigregister
PyQuanTrait_swigregister(PyQuanTrait)
 
class BasePenetrance(BaseOperator):
    """
    Details:
 
        A penetrance model models the probability that an individual has a
        certain disease provided that he or she has certain genetic
        (genotype) and environmental (information field) riske factors. A
        penetrance operator calculates this probability according to
        provided information and set his or her affection status randomly.
        For example, an individual will have probability 0.8 to be
        affected if the penetrance is 0.8. This class is the base class to
        all penetrance operators and defines a common interface for all
        penetrance operators.  A penetrance operator can be applied at any
        stage of an evolutionary cycle. If it is applied before or after
        mating, it will set affection status of all parents and offspring,
        respectively. If it is applied during mating, it will set the
        affection status of each offspring. You can also apply a
        penetrance operator to an individual using its applyToIndividual
        member function.  By default, a penetrance operator assigns
        affection status of individuals but does not save the actual
        penetrance value. However, if an information field is specified,
        penetrance values will be saved to this field for future analysis.
        When a penetrance operator is applied to a population, it is only
        applied to the current generation. You can, however, use parameter
        ancGens to set affection status for all ancestral generations
        (ALL_AVAIL), or individuals in specified generations if a list of
        ancestral generations is specified. Note that this parameter is
        ignored if the operator is applied during mating.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            BasePenetrance(ancGens=UNSPECIFIED, begin=0, end=-1, step=1,
              at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a base penetrance operator. This operator assign individual
            affection status in the present generation (default). If ALL_AVAIL
            or a list of ancestral generations are spcified in parameter
            ancGens, individuals in specified ancestral generations will be
            processed. A penetrance operator can be applied to specified
            (virtual) subpopulations (parameter subPops) and replicates
            (parameter reps). If an informatio field is given, penetrance
            value will be stored in this information field of each individual.
 
 
        """
        _simuPOP_baop.BasePenetrance_swiginit(self,_simuPOP_baop.new_BasePenetrance(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_BasePenetrance
    def applyToIndividual(self, *args, **kwargs):
        """
        Usage:
 
            x.applyToIndividual(ind, pop=None)
 
        Details:
 
            Apply the penetrance operator to a single individual ind and set
            his or her affection status. A population reference can be passed
            if the penetrance model depends on population properties such as
            generation number. This function returns the affection status.
 
 
        """
        return _simuPOP_baop.BasePenetrance_applyToIndividual(self, *args, **kwargs)
 
BasePenetrance.applyToIndividual = new_instancemethod(_simuPOP_baop.BasePenetrance_applyToIndividual,None,BasePenetrance)
BasePenetrance_swigregister = _simuPOP_baop.BasePenetrance_swigregister
BasePenetrance_swigregister(BasePenetrance)
 
class MapPenetrance(BasePenetrance):
    """
    Details:
 
        This penetrance operator assigns individual affection status using
        a user-specified penetrance dictionary.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            MapPenetrance(loci, penetrance, ancGens=UNSPECIFIED, begin=0,
              end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL,
              infoFields=[])
 
        Details:
 
            Create a penetrance operator that get penetrance value from a
            dictionary penetrance with genotype at loci as keys, and
            penetrance as values. For each individual, genotypes at loci are
            collected one by one (e.g. p0_loc0, p1_loc0, p0_loc1, p1_loc1...
            for a diploid individual) and are looked up in the dictionary.
            Parameter loci can be a list of loci indexes, names or ALL_AVAIL.
            If a genotype cannot be found, it will be looked up again without
            phase information (e.g. (1,0) will match key (0,1)). If the
            genotype still can not be found, a ValueError will be raised. This
            operator supports sex chromosomes and haplodiploid populations. In
            these cases, only valid genotypes should be used to generator the
            dictionary keys.
 
 
        """
        _simuPOP_baop.MapPenetrance_swiginit(self,_simuPOP_baop.new_MapPenetrance(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_MapPenetrance
MapPenetrance_swigregister = _simuPOP_baop.MapPenetrance_swigregister
MapPenetrance_swigregister(MapPenetrance)
 
class MaPenetrance(BasePenetrance):
    """
    Details:
 
        This operator is called a 'multi-allele' penetrance operator
        because it groups multiple alleles into two groups: wildtype and
        non-wildtype alleles. Alleles in each allele group are assumed to
        have the same effect on individual penetrance. If we denote all
        wildtype alleles as A, and all non-wildtype alleles a, this
        operator assign Individual penetrance according to genotype AA,
        Aa, aa in the diploid case, and A and a in the haploid case.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            MaPenetrance(loci, penetrance, wildtype=0, ancGens=UNSPECIFIED,
              begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
              subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Creates a multi-allele penetrance operator that groups multiple
            alleles into a wildtype group (with alleles wildtype, default to
            [0]), and a non-wildtype group. A list of penetrance values is
            specified through parameter penetrance, for genotypes at one or
            more loci. Parameter loci can be a list of loci indexes, names or
            ALL_AVAIL. If we denote wildtype alleles using capital letters A,
            B ... and non-wildtype alleles using small letters a, b ..., the
            penetrance values should be for
            *   genotypes A and a for the haploid single-locus case,
            *   genotypes AB, Ab, aB and bb for haploid two=locus cases,
            *   genotypes AA, Aa and aa for diploid single-locus cases,
            *   genotypes AABB, AABb, AAbb, AaBB, AaBb, Aabb, aaBB, aaBb, and
            aabb for diploid two-locus cases,
            *   and in general 2**n for diploid and 3**n for haploid cases if
            there are n loci. This operator does not support haplodiploid
            populations and sex chromosomes.
 
 
        """
        _simuPOP_baop.MaPenetrance_swiginit(self,_simuPOP_baop.new_MaPenetrance(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_MaPenetrance
MaPenetrance_swigregister = _simuPOP_baop.MaPenetrance_swigregister
MaPenetrance_swigregister(MaPenetrance)
 
class MlPenetrance(BasePenetrance):
    """
    Details:
 
        This penetrance operator is created by a list of penetrance
        operators. When it is applied to an individual, it applies these
        penetrance operators to the individual, obtain a list of
        penetrance values, and compute a combined penetrance value from
        them and assign affection status accordingly. ADDITIVE,
        multiplicative, and a heterogeneour multi-locus model are
        supported. Please refer to Neil Rish (1989) "Linkage Strategies
        for  Genetically Complex Traits" for some analysis of these
        models.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            MlPenetrance(ops, mode=MULTIPLICATIVE, ancGens=UNSPECIFIED,
              begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL,
              subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a multiple-locus penetrance operator from a list penetrance
            operator ops. When this operator is applied to an individual
            (parents when used before mating and offspring when used during
            mating), it applies these operators to the individual and obtain a
            list of (usually single-locus) penetrance values. These penetrance
            values are combined to a single penetrance value using
            *   Prod(f_i), namely the product of individual penetrance if mode
            = MULTIPLICATIVE,
            *   sum(f_i) if mode = ADDITIVE, and
            *   1-Prod(1 - f_i) if mode = HETEROGENEITY 0 or 1 will be
            returned if the combined penetrance value is less than zero or
            greater than 1.
 
 
        """
        _simuPOP_baop.MlPenetrance_swiginit(self,_simuPOP_baop.new_MlPenetrance(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_MlPenetrance
MlPenetrance_swigregister = _simuPOP_baop.MlPenetrance_swigregister
MlPenetrance_swigregister(MlPenetrance)
 
class PyPenetrance(BasePenetrance):
    """
    Details:
 
        This penetrance operator assigns penetrance values by calling a
        user provided function. It accepts a list of loci (parameter
        loci), and a Python function func which should be defined with one
        or more of parameters geno, gen, ind, pop, or names of information
        fields. When this operator is applied to a population, it passes
        genotypes at specified loci, generation number, a reference to an
        individual, a reference to the current population (usually used to
        retrieve population variables) and values at specified information
        fields to respective parameters of this function. The returned
        penetrance values will be used to determine the affection status
        of each individual.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            PyPenetrance(func, loci=[], ancGens=UNSPECIFIED, begin=0,
              end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL,
              infoFields=[])
 
        Details:
 
            Create a Python hybrid penetrance operator that passes genotype at
            specified loci, values at specified information fields (if
            requested), and a generation number to a user-defined function
            func. Parameter loci can be a list of loci indexes, names, or
            ALL_AVAIL. The return value will be treated as Individual
            penetrance.
 
 
        """
        _simuPOP_baop.PyPenetrance_swiginit(self,_simuPOP_baop.new_PyPenetrance(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_PyPenetrance
PyPenetrance_swigregister = _simuPOP_baop.PyPenetrance_swigregister
PyPenetrance_swigregister(PyPenetrance)
 
class Pedigree(Population):
    """
    Details:
 
        The pedigree class is derived from the population class. Unlike a
        population class that emphasizes on individual properties, the
        pedigree class emphasizes on relationship between individuals. An
        unique ID for all individuals is needed to create a pedigree
        object from a population object. Compared to the Population class,
        a Pedigree object is optimized for access individuals by their
        IDs, regardless of population structure and ancestral generations.
        Note that the implementation of some algorithms rely on the fact
        that parental IDs are smaller than their offspring because
        individual IDs are assigned sequentially during evolution.
        Pedigrees with manually assigned IDs should try to obey such a
        rule.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            Pedigree(pop, loci=[], infoFields=[], ancGens=ALL_AVAIL,
              idField="ind_id", fatherField="father_id",
              motherField="mother_id", stealPop=False)
 
        Details:
 
            Create a pedigree object from a population, using a subset of loci
            (parameter loci, can be a list of loci indexes, names, or
            ALL_AVAIL, default to no locus), information fields (parameter
            infoFields, default to no information field besides idField,
            fatherField and motherField), and ancestral generations (parameter
            ancGens, default to all ancestral generations). By default,
            information field father_id (parameter fatherField) and mother_id
            (parameter motherField) are used to locate parents identified by
            ind_id (parameter idField), which should store an unique ID for
            all individuals. Multiple individuls with the same ID are allowed
            and will be considered as the same individual, but a warning will
            be given if they actually differ in genotype or information
            fields. Operators IdTagger and PedigreeTagger are usually used to
            assign such IDs, although function sampling.indexToID could be
            used to assign unique IDs and construct parental IDs from index
            based relationship recorded by operator ParentsTagger. A pedigree
            object could be constructed with one or no parent but certain
            functions such as relative tracking will not be available for such
            pedigrees. In case that your are no longer using your population
            object, you could steal the content from the population by setting
            stealPop to True.
 
 
        """
        _simuPOP_baop.Pedigree_swiginit(self,_simuPOP_baop.new_Pedigree(*args, **kwargs))
    def clone(self):
        """
        Usage:
 
            x.clone()
 
        Details:
 
            Create a cloned copy of a Pedigree.
 
 
        """
        return _simuPOP_baop.Pedigree_clone(self)
 
    def save(self, *args, **kwargs):
        """
        Usage:
 
            x.save(filename, infoFields=[], loci=[])
 
        Details:
 
            Save a pedigree to file filename. This function goes through all
            individuals of a pedigree and outputs in each line the ID of
            individual, IDs of his or her parents, sex ('M' or 'F'), affection
            status ('A' or 'U'), values of specified information fields
            infoFields and genotypes at specified loci (parameter loci, which
            can be a list of loci indexes, names, or ALL_AVAIL). Allele
            numbers, instead of their names are outputed. Two columns are used
            for each locus if the population is diploid. This file can be
            loaded using function loadPedigree although additional information
            such as names of information fields need to be specified. This
            format differs from a .ped file used in some genetic analysis
            software in that there is no family ID and IDs of all individuals
            have to be unique. Note that parental IDs will be set to zero if
            the parent is not in the pedigree object. Therefore, the parents
            of individuals in the top-most ancestral generation will always be
            zero.
 
 
        """
        return _simuPOP_baop.Pedigree_save(self, *args, **kwargs)
 
    def indByID(self, *args, **kwargs):
        """
        Usage:
 
            x.indByID(id)
 
        Details:
 
            Return a reference to individual with id. An IndexError will be
            raised if no individual with id is found. An float id is
            acceptable as long as it rounds closely to an integer.
 
 
        """
        return _simuPOP_baop.Pedigree_indByID(self, *args, **kwargs)
 
    def numParents(self):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.Pedigree_numParents(self)
 
    def locateRelatives(self, *args, **kwargs):
        """
        Usage:
 
            x.locateRelatives(relType, resultFields=[], sex=ANY_SEX,
              affectionStatus=ANY_AFFECTION_STATUS, ancGens=ALL_AVAIL)
 
        Details:
 
            This function locates relatives (of type relType) of each
            individual and store their IDs in information fields relFields.
            The length of relFields determines how many relatives an
            individual can have.  Parameter relType specifies what type of
            relative to locate, which can be
            *   SPOUSE locate spouses with whom an individual has at least one
            common offspring.
            *   OUTBRED_SPOUSE locate non-slibling spouses, namely spouses
            with no shared parent.
            *   OFFSPRING all offspring of each individual.
            *   COMMON_OFFSPRING common offspring between each individual and
            its spouse (located by SPOUSE or OUTBRED_SPOUSE). relFields should
            consist of an information field for spouse and m-1 fields for
            offspring where m is the number of fields.
            *   FULLSIBLING siblings with common father and mother,
            *   SIBLING siblings with at least one common parent. Optionally,
            you can specify the sex and affection status of relatives you
            would like to locate, using parameters sex and affectionStatus.
            sex can be ANY_SEX (default), MALE_ONLY, FEMALE_ONLY, SAME_SEX or
            OPPOSITE_SEX, and affectionStatus can be AFFECTED, UNAFFECTED or
            ANY_AFFECTION_STATUS (default). Only relatives with specified
            properties will be located.  This function will by default go
            through all ancestral generations and locate relatives for all
            individuals. This can be changed by setting parameter ancGens to
            certain ancestral generations you would like to process.
 
 
        """
        return _simuPOP_baop.Pedigree_locateRelatives(self, *args, **kwargs)
 
    def traceRelatives(self, *args, **kwargs):
        """
        Usage:
 
            x.traceRelatives(fieldPath, sex=[], affectionStatus=[],
              resultFields=[], ancGens=ALL_AVAIL)
 
        Details:
 
            Trace a relative path in a population and record the result in the
            given information fields resultFields. This function is used to
            locate more distant relatives based on the relatives located by
            function locateRelatives. For example, after siblings and
            offspring of all individuals are located, you can locate mother's
            sibling's offspring using a relative path, and save their indexes
            in each individuals information fields resultFields.  A relative
            path consits of a fieldPath that specifies which information
            fields to look for at each step, a sex specifies sex choices at
            each generation, and a affectionStatus that specifies affection
            status at each generation. fieldPath should be a list of
            information fields, sex and affectionStatus are optional. If
            specified, they should be a list of ANY_SEX, MALE_ONLY,
            FEMALE_ONLY, SAME_SEX and OppsiteSex for parameter sex, and a list
            of UNAFFECTED, AFFECTED and ANY_AFFECTION_STATUS for parameter
            affectionStatus.  For example, if fieldPath = [['father_id',
            'mother_id'], ['sib1', 'sib2'], ['off1', 'off2']], and sex =
            [ANY_SEX, MALE_ONLY, FEMALE_ONLY], this function will locate
            father_id and mother_id for each individual, find all individuals
            referred by father_id and mother_id, find informaton fields sib1
            and sib2 from these parents and locate male individuals referred
            by these two information fields. Finally, the information fields
            off1 and off2 from these siblings are located and are used to
            locate their female offspring. The results are father or mother's
            brother's daughters. Their indexes will be saved in each
            individuals information fields resultFields. If a list of
            ancestral generations is given in parameter ancGens is given, only
            individuals in these ancestral generations will be processed.
 
 
        """
        return _simuPOP_baop.Pedigree_traceRelatives(self, *args, **kwargs)
 
    def individualsWithRelatives(self, *args, **kwargs):
        """
        Usage:
 
            x.individualsWithRelatives(infoFields, sex=[],
              affectionStatus=[], subPops=ALL_AVAIL, ancGens=ALL_AVAIL)
 
        Details:
 
            Return a list of IDs of individuals who have non-negative values
            at information fields infoFields. Additional requirements could be
            specified by parameters sex and affectionStatus. sex can be
            ANY_SEX (default), MALE_ONLY, FEMALE_ONLY, SAME_SEX or
            OPPOSITE_SEX, and affectionStatus can be AFFECTED, UNAFFECTED or
            ANY_AFFECTION_STATUS (default). This function by default check all
            individuals in all ancestral generations, but you could limit the
            search using parameter subPops (a list of (virtual)
            subpopulations) and ancestral generations ancGens. Relatives fall
            out of specified subpopulations and ancestral generaions will be
            considered invalid.
 
 
        """
        return _simuPOP_baop.Pedigree_individualsWithRelatives(self, *args, **kwargs)
 
    def identifyFamilies(self, *args, **kwargs):
        """
        Usage:
 
            x.identifyFamilies(pedField="", subPops=ALL_AVAIL,
              ancGens=ALL_AVAIL)
 
        Details:
 
            This function goes through all individuals in a pedigree and group
            related individuals into families. If an information field
            pedField is given, indexes of families will be assigned to this
            field of each family member. The return value is a list of family
            sizes corresponding to families 0, 1, 2, ... etc. If a list of
            (virtual) subpopulations (parameter subPops) or ancestral
            generations are specified (parameter ancGens), the search will be
            limited to individuals in these subpopulations and generations.
 
 
        """
        return _simuPOP_baop.Pedigree_identifyFamilies(self, *args, **kwargs)
 
    def identifyAncestors(self, *args, **kwargs):
        """
        Usage:
 
            x.identifyAncestors(IDs=ALL_AVAIL, subPops=ALL_AVAIL,
              ancGens=ALL_AVAIL)
 
        Details:
 
            If a list of individuals (IDs) is given, this function traces
            backward in time and find all ancestors of these individuals. If
            IDs is ALL_AVAIL, ancestors of all individuals in the present
            generation will be located. If a list of (virtual) subpopulations
            (subPops) or ancestral geneartions (ancGens) is given, the search
            will be limited to individuals in these subpopulations and
            generations. This could be used to, for example, find all fathers
            of IDs. This function returns a list of IDs, which includes valid
            specified IDs. Invalid IDs will be silently ignored. Note that
            parameters subPops and ancGens will limit starting IDs if IDs is
            set to ALL_AVAIL, but specified IDs will not be trimmed according
            to these parameters.
 
 
        """
        return _simuPOP_baop.Pedigree_identifyAncestors(self, *args, **kwargs)
 
    def identifyOffspring(self, *args, **kwargs):
        """
        Usage:
 
            x.identifyOffspring(IDs=[], subPops=ALL_AVAIL,
              ancGens=ALL_AVAIL)
 
        Details:
 
            This function traces forward in time and find all offspring of
            individuals specified in parameter IDs. If a list of (virtual)
            subpopulations (subPops) or ancestral geneartions (ancGens) is
            given, the search will be limited to individuals in these
            subpopulations and generations. This could be used to, for
            example, find all male offspring of IDs. This function returns a
            list of IDs, which includes valid starting IDs. Invalid IDs are
            silently ignored. Note that parameters subPops and ancGens will
            limit search result but will not be used to trim specified IDs.
 
 
        """
        return _simuPOP_baop.Pedigree_identifyOffspring(self, *args, **kwargs)
 
    def removeIndividuals(self, *args, **kwargs):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.Pedigree_removeIndividuals(self, *args, **kwargs)
 
    def removeSubPops(self, *args, **kwargs):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.Pedigree_removeSubPops(self, *args, **kwargs)
 
    def push(self, *args, **kwargs):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.Pedigree_push(self, *args, **kwargs)
 
    def addChrom(self, *args, **kwargs):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.Pedigree_addChrom(self, *args, **kwargs)
 
    def addChromFrom(self, *args, **kwargs):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.Pedigree_addChromFrom(self, *args, **kwargs)
 
    def addIndFrom(self, *args, **kwargs):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.Pedigree_addIndFrom(self, *args, **kwargs)
 
    def mergeSubPops(self, *args, **kwargs):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.Pedigree_mergeSubPops(self, *args, **kwargs)
 
    def resize(self, *args, **kwargs):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.Pedigree_resize(self, *args, **kwargs)
 
    def setSubPopByIndInfo(self, *args, **kwargs):
        """Obsolete or undocumented function."""
        return _simuPOP_baop.Pedigree_setSubPopByIndInfo(self, *args, **kwargs)
 
    __swig_destroy__ = _simuPOP_baop.delete_Pedigree
Pedigree.clone = new_instancemethod(_simuPOP_baop.Pedigree_clone,None,Pedigree)
Pedigree.save = new_instancemethod(_simuPOP_baop.Pedigree_save,None,Pedigree)
Pedigree.indByID = new_instancemethod(_simuPOP_baop.Pedigree_indByID,None,Pedigree)
Pedigree.numParents = new_instancemethod(_simuPOP_baop.Pedigree_numParents,None,Pedigree)
Pedigree.locateRelatives = new_instancemethod(_simuPOP_baop.Pedigree_locateRelatives,None,Pedigree)
Pedigree.traceRelatives = new_instancemethod(_simuPOP_baop.Pedigree_traceRelatives,None,Pedigree)
Pedigree.individualsWithRelatives = new_instancemethod(_simuPOP_baop.Pedigree_individualsWithRelatives,None,Pedigree)
Pedigree.identifyFamilies = new_instancemethod(_simuPOP_baop.Pedigree_identifyFamilies,None,Pedigree)
Pedigree.identifyAncestors = new_instancemethod(_simuPOP_baop.Pedigree_identifyAncestors,None,Pedigree)
Pedigree.identifyOffspring = new_instancemethod(_simuPOP_baop.Pedigree_identifyOffspring,None,Pedigree)
Pedigree.removeIndividuals = new_instancemethod(_simuPOP_baop.Pedigree_removeIndividuals,None,Pedigree)
Pedigree.removeSubPops = new_instancemethod(_simuPOP_baop.Pedigree_removeSubPops,None,Pedigree)
Pedigree.push = new_instancemethod(_simuPOP_baop.Pedigree_push,None,Pedigree)
Pedigree.addChrom = new_instancemethod(_simuPOP_baop.Pedigree_addChrom,None,Pedigree)
Pedigree.addChromFrom = new_instancemethod(_simuPOP_baop.Pedigree_addChromFrom,None,Pedigree)
Pedigree.addIndFrom = new_instancemethod(_simuPOP_baop.Pedigree_addIndFrom,None,Pedigree)
Pedigree.mergeSubPops = new_instancemethod(_simuPOP_baop.Pedigree_mergeSubPops,None,Pedigree)
Pedigree.resize = new_instancemethod(_simuPOP_baop.Pedigree_resize,None,Pedigree)
Pedigree.setSubPopByIndInfo = new_instancemethod(_simuPOP_baop.Pedigree_setSubPopByIndInfo,None,Pedigree)
Pedigree_swigregister = _simuPOP_baop.Pedigree_swigregister
Pedigree_swigregister(Pedigree)
 
 
def loadPedigree(*args, **kwargs):
  """
    Usage:
 
        loadPedigree(file, idField="ind_id", fatherField="father_id",
          motherField="mother_id", ploidy=2, loci=[], chromTypes=[],
          lociPos=[], chromNames=[], alleleNames=[], lociNames=[],
          subPopNames=[], infoFields=[])
 
    Details:
 
        Load a pedigree from a file saved by operator PedigreeTagger or
        function Pedigree.save. This file contains the ID of each
        offspring and their parent(s) and optionally sex ('M' or 'F'),
        affection status ('A' or 'U'), values of information fields and
        genotype at some loci. IDs of each individual and their parents
        are loaded to information fields idField, fatherField and
        motherField. Only numeric IDs are allowed, and individual IDs must
        be unique across all generations.  Because this file does not
        contain generation information, generations to which offspring
        belong are determined by the parent-offspring relationships.
        Individuals without parents are assumed to be in the top-most
        ancestral generation. This is the case for individuals in the top-
        most ancestral generation if the file is saved by function
        ``Pedigree.save()``, and for individuals who only appear as
        another individual's parent, if the file is saved by operator
        ``PedigreeTagger``. The order at which offsprng is specified is
        not important because this function essentially creates a top-most
        ancestral generation using IDs without parents, and creates the
        next generation using offspring of these parents, and so on until
        all generations are recreated. That is to say, if you have a
        mixture of pedigrees with different generations, they will be
        lined up from the top most ancestral generation.  If individual
        sex is not specified, sex of of parents are determined by their
        parental roles (father or mother) but the sex of individuals in
        the last generation can not be determined so they will all be
        males. If additional information fields are given, their names
        have to be specified using parameter infoFields. The rest of the
        columns are assued to be alleles, arranged ploidy consecutive
        columns for each locus. If paraemter loci is not specified, the
        number of loci is calculated by number of columns divided by
        ploidy (default to 2). All loci are assumed to be on one
        chromosome unless parameter loci is used to specified number of
        loci on each chromosome. Additional parameters such as ploidy,
        chromTypes, lociPos, chromNames, alleleNames, lociNames could be
        used to specified the genotype structured of the loaded pedigree.
        Please refer to class Population for details about these
        parameters.
 
 
    """
  return _simuPOP_baop.loadPedigree(*args, **kwargs)
class RevertFixedSites(BaseOperator):
    """
    Details:
 
        This operator looks into a population in mutational space and
        revert a mutant to wildtype allele if it is fixed in the
        population. If a valid output is specifieid, fixed alleles will be
        outputed with a leading generation number.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            RevertFixedSites(output="", begin=0, end=-1, step=1, at=[],
              reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create an operator to revert alleles at fixed loci from value 1 to
            0. Parameter subPops is ignored.
 
 
        """
        _simuPOP_baop.RevertFixedSites_swiginit(self,_simuPOP_baop.new_RevertFixedSites(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_RevertFixedSites
RevertFixedSites_swigregister = _simuPOP_baop.RevertFixedSites_swigregister
RevertFixedSites_swigregister(RevertFixedSites)
 
class MutSpaceSelector(BaseSelector):
    """
    Details:
 
        This selector assumes that alleles are mutant locations in the
        mutational space and assign fitness values to them according to a
        random distribution. The overall individual fitness is determined
        by either an additive, an multiplicative or an exponential model.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            MutSpaceSelector(selDist, mode=EXPONENTIAL, output="", begin=0,
              end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL,
              infoFields=ALL_AVAIL)
 
        Details:
 
            Create a selector that assigns individual fitness values according
            to random fitness effects. selDist can be
            *   (CONSTANT, s, h) where s will be used for all mutants. The
            fitness value for genotypes AA, Aa and aa will be (1, 1-hs, 1-s).
            If h is unspecified, a default value h=0.5 (additive model) will
            be used.
            *   (GAMMA_DISTRIBUTION, theta, k, h where s follows a gamma
            distribution with scale parameter theta and shape parameter k.
            Fitness values for genotypes AA, Aa and aa will be 1, 1-hs and
            1-s. A default value h=0.5 will be used if h is unspecified.
            *   a Python function, which will be called when selection
            coefficient of a new mutant is needed. This function should return
            a single value s (with default value h=0.5) or a sequence of (h,
            s). Mutant location will be passed to this function if it accepts
            a parameter loc. This allows the definition of site-specific
            selection coefficients. Individual fitness will be combined in
            ADDITIVE, MULTIPLICATIVE or EXPONENTIAL mode. (See MlSelector for
            details). If an output is given, mutants and their fitness values
            will be written to the output, in the form of 'mutant s h'.
 
 
        """
        _simuPOP_baop.MutSpaceSelector_swiginit(self,_simuPOP_baop.new_MutSpaceSelector(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_MutSpaceSelector
MutSpaceSelector_swigregister = _simuPOP_baop.MutSpaceSelector_swigregister
MutSpaceSelector_swigregister(MutSpaceSelector)
 
class MutSpaceMutator(BaseOperator):
    """
    Details:
 
        This is an infite site mutation model in mutational space. The
        alleles in the population is assumed to be locations of mutants. A
        mutation rate is given that mutate alleles in 'regions'. If number
        of mutants for an individual exceed the number of loci, 10 loci
        will be added to everyone in the population.
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            MutSpaceMutator(rate, ranges, model=1, output="", begin=0,
              end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL,
              infoFields=[])
 
        Details:
 
            This operator accepts a list of ranges which is the 'real range'
            of each chromosome. Mutation happens with muation rate rate and
            mutants will be recorded to the population (instead of alleles).
            By default, this mutator assumes an finite-allele model where all
            mutations are allowed and if a mutant (allele 1) is mutated, it
            will be mutated to allele 0 (back mutation). Alternatively (model
            = 2), an infinite-sites mutation model can be used where mutations
            can happen only at a new locus. Mutations happen at a locus with
            existing mutants will be moved to a random locus without existing
            mutant. A warning message will be printed if there is no vacant
            locus available. If a valid output is given, mutants will be
            outputted in the format of "gen mutant ind type" where type is 0
            for forward (0->1), 1 for backward (1->0), 2 for relocated
            mutations, and 3 for ignored mutation because no vacent locus is
            available. The second mode has the advantage that all mutants in
            the simulated population can be traced to a single mutation event.
            If the regions are reasonably wide and mutation rates are low,
            these two mutation models should yield similar results.
 
 
        """
        _simuPOP_baop.MutSpaceMutator_swiginit(self,_simuPOP_baop.new_MutSpaceMutator(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_MutSpaceMutator
MutSpaceMutator_swigregister = _simuPOP_baop.MutSpaceMutator_swigregister
MutSpaceMutator_swigregister(MutSpaceMutator)
 
class MutSpaceRecombinator(GenoTransmitter):
    """
    Details:
 
        This during mating operator recombine chromosomes, which records
        mutant locations, using a fixed recombination rate (per base
        pair).
 
 
    """
    thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag')
    __repr__ = _swig_repr
    def __init__(self, *args, **kwargs): 
        """
        Usage:
 
            MutSpaceRecombinator(rate, ranges, output="", begin=0, end=-1,
              step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])
 
        Details:
 
            Create a Recombinator (a mendelian genotype transmitter with
            recombination and gene conversion) that passes genotypes from
            parents (or a parent in case of self-fertilization) to offspring.
            A recombination rate in the unit of base pair is needed.
 
 
        """
        _simuPOP_baop.MutSpaceRecombinator_swiginit(self,_simuPOP_baop.new_MutSpaceRecombinator(*args, **kwargs))
    __swig_destroy__ = _simuPOP_baop.delete_MutSpaceRecombinator
MutSpaceRecombinator_swigregister = _simuPOP_baop.MutSpaceRecombinator_swigregister
MutSpaceRecombinator_swigregister(MutSpaceRecombinator)